63 research outputs found

    Mechanisms of Orthostatic Tolerance Improvement Following Artificial Gravity Exposure Differ Between Men and Women

    Get PDF
    We recently determined that a short exposure to artificial gravity (AG) improved the orthostatic tolerance limit (OTL) of cardiovascularly deconditioned subjects. We now seek to determine the mechanisms of that improvement in these hypovolemic men and women. Methods. We determined the orthostatic tolerance limit (OTL) of 9 men and 8 women following a 90 min exposure to AG compared to 90 min of head down bed rest (HDBR). In both cases (21 days apart), subjects were made hypovolemic (low salt diet plus 20 mg intravenous furosemide). Orthostatic tolerance was determined from a combination of head up tilt and increasing lower body negative pressure until presyncope. Mean values and correlations with OTL were determined for heart rate, blood pressure, stroke volume, cardiac output and peripheral resistance (Finometer), cerebral artery blood velocity (DWL), partial pressure of carbon dioxide (Novametrics) and body segmental impedance (UFI THRIM) were measured during supine baseline, during OTL to presyncope and during supine recovery Results. Orthostatic tolerance of these hypovolemic subjects was significantly greater on the day of AG exposure than on the HDBR day. Regression of OTL on these variables identified significant relationships on the HDBR day that were not evident on the AG day: resting TPR correlated positively while resting cerebral flow correlated negatively with OTL. On both days, women's resting stroke volume correlated positively with orthostatic tolerance. Higher group mean values of stroke volume and cerebral artery flow and lower values of blood pressure, peripheral vascular and cerebrovascular resistance both at control and during OTL testing were observed on the AG day. Even though regression of OTL on resting stroke volume was significant only in women, presyncopal stroke volume reached the same level on each day of study for both men and women while the OTL test lasted 30% longer in men and 22% longer in women. Cerebral artery flow appeared to follow stroke volume and absolute values of cerebral flow did not correlate with the development of presyncope. Women responded to AG exposure with elevated cerebral flow at resting control and throughout the OTL test, implying a loss of autoregulation in deconditioned (hypovolemic) women following AG exposure. Conclusions. Before countermeasures to space flight cardiovascular deconditioning are established, gender differences in cardiovascular responses to orthostatic stress, in general, and to orthostatic stress following exposure to artificial gravity, in particular, need to be determined. Since, in both men and women, a single, acute bout of AG exposure improved orthostatic tolerance, the feasibility of short exposures to AG during longer spaceflights or prior to entry into a gravity (Earth or Mars) environment, should be explored. Given the known beneficial effects of AG on other organ systems, the present study indicates that the positive effects of AG on cardiac stroke volume make AG a likely candidate for maintaining cardiovascular conditioning

    Exploring the structure of glass-forming liquids using high energy X-ray diffraction, containerless methodology and molecular dynamics simulation

    Get PDF
    High energy X-ray diffraction can be combined with containerless techniques to provide information on the atomic arrangements in glass-forming liquids in stable and metastable regimes. The high incident energies provide bulk diffraction data to high values of scattering vector which enables significantly more robust analysis of the local and medium-range order that influences important physical properties such as viscosity and crystal nucleation. These combined techniques have been applied to a range of oxide liquids. In this contribution we illustrate addition of further dimensions to phase space by controlling the partial pressure of oxygen that permits the study liquids containing iron. The advantages of rapid data acquisition are also demonstrated in a study of tellurite glass-forming systems where a transition from ergodic to non-ergodic regimes in the deeply supercooled liquid is shown. Finally we demonstrate how descriptions of the liquid structure can be developed by combining HEXRD with molecular dynamics simulations

    Exploring the structure of glass-forming liquids using high energy X-ray diffraction, containerless methodology and molecular dynamics simulation

    Get PDF
    High energy X-ray diffraction can be combined with containerless techniques to provide information on the atomic arrangements in glass-forming liquids in stable and metastable regimes. The high incident energies provide bulk diffraction data to high values of scattering vector which enables significantly more robust analysis of the local and medium-range order that influences important physical properties such as viscosity and crystal nucleation. These combined techniques have been applied to a range of oxide liquids. In this contribution we illustrate addition of further dimensions to phase space by controlling the partial pressure of oxygen that permits the study liquids containing iron. The advantages of rapid data acquisition are also demonstrated in a study of tellurite glass-forming systems where a transition from ergodic to non-ergodic regimes in the deeply supercooled liquid is shown. Finally we demonstrate how descriptions of the liquid structure can be developed by combining HEXRD with molecular dynamics simulations

    Paternal Diet Defines Offspring Chromatin State and Intergenerational Obesity

    Get PDF
    The global rise in obesity has revitalized a search for genetic and epigenetic factors underlying the disease. We present a Drosophila model of paternal-diet-induced intergenerational metabolic reprogramming (IGMR) and identify genes required for its encoding in offspring. Intriguingly, we find that as little as 2 days of dietary intervention in fathers elicits obesity in offspring. Paternal sugar acts as a physiological suppressor of variegation, desilencing chromatin-state-defined domains in both mature sperm and in offspring embryos. We identify requirements for H3K9/K27me3-dependent reprogramming of metabolic genes in two distinct germline and zygotic windows. Critically, we find evidence that a similar system may regulate obesity susceptibility and phenotype variation in mice and humans. The findings provide insight into the mechanisms underlying intergenerational metabolic reprogramming and carry profound implications for our understanding of phenotypic variation and evolution

    The evolutionary ecology of complex lifecycle parasites: linking phenomena with mechanisms

    Get PDF
    Many parasitic infections, including those of humans, are caused by complex lifecycle parasites (CLPs): parasites that sequentially infect different hosts over the course of their lifecycle. CLPs come from a wide range of taxonomic groups-from single-celled bacteria to multicellular flatworms-yet share many common features in their life histories. Theory tells us when CLPs should be favoured by selection, but more empirical studies are required in order to quantify the costs and benefits of having a complex lifecycle, especially in parasites that facultatively vary their lifecycle complexity. In this article, we identify ecological conditions that favour CLPs over their simple lifecycle counterparts and highlight how a complex lifecycle can alter transmission rate and trade-offs between growth and reproduction. We show that CLPs participate in dynamic host-parasite coevolution, as more mobile hosts can fuel CLP adaptation to less mobile hosts. Then, we argue that a more general understanding of the evolutionary ecology of CLPs is essential for the development of effective frameworks to manage the many diseases they cause. More research is needed identifying the genetics of infection mechanisms used by CLPs, particularly into the role of gene duplication and neofunctionalisation in lifecycle evolution. We propose that testing for signatures of selection in infection genes will reveal much about how and when complex lifecycles evolved, and will help quantify complex patterns of coevolution between CLPs and their various hosts. Finally, we emphasise four key areas where new research approaches will provide fertile opportunities to advance this field

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    Protein-lipid interactions stabilize the oligomeric state of BOR1p from saccharomyces cerevisiae

    No full text
    The BOR proteins are integral membrane transporters which mediate efflux of boron. Structures of two BOR family members from Arabidopsis thaliana and Saccharomyces mikitiae indicate that the proteins exist as dimers. However, it remains unclear whether dimer formation is dependent on protein-lipid interactions or whether the dimer is the functional form of the protein. Here, we used the BOR1p protein from Saccharomyces cerevisiae (ScBOR1p), recombinantly expressed in its native host, to explore these aspects of BOR transporter structure and function. Native mass spectrometry (MS) revealed that ScBOR1p isolates as a monomer in a range of detergents. Lipidomics analysis showed that ScBOR1p co-isolates with phosphatidylserine (PS), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol (PI). Delipidation of ScBOR1p followed by addition of PS or PE causes formation of ScBOR1p dimers. Using a homology model of ScBOR1p, we identified a possible lipid binding site at the dimer interface comprising residues Arg265, Arg267, Arg480, and Arg481. A quadruple 4R/A mutant was expressed and isolated and also shown to be monomeric by native MS, and addition of PS or PE to this mutant did not reform the dimer. Functional complementation analysis revealed that the 4R/A mutant had boron efflux activity, suggesting that the ScBOR1p monomer is responsible for transport function. Taken together, these data strongly indicate that the physiological form of the ScBOR1p is the dimer and that dimer formation is dependent on association with membrane lipids
    corecore