113 research outputs found

    Influence de divers facteurs écologiques sur la bioaccumulation d'éléments métalliques (Cd, Cu, Pb, Zn) chez de jeunes palourdes (Ruditapes philippinarum) au cours du prégrossissement en nourricerie

    Get PDF
    La bioaccumulation des métaux chez les mollusques peut être une conséquence de la désorption des éléments métalliques fixés sur les particules inertes ou vivantes en suspension dans l'eau qui leur servent de nourriture. Les meilleures expériences réalisées jusqu'ici semblent indiquer que les matières en suspension ont un rôle mineur dans la contamination des mollusques. Mais quelles que soient les précautions prises, les expériences ne simulent jamais parfaitement les phénomènes naturels. Aussi, nous avons choisi de reprendre cette question à l'aide d'une expérience en grand volume où le nombre de paramètres contrôlés est restreint mais où les organismes sont dans des conditions aussi proches que possible de la réalité.Au cours d'un prégrossissement expérimental, les jeunes palourdes reçoivent des quantités variables contrôlées de nourriture phytoplanctonique. La fourniture d'une nourriture plus abondante a pour conséquence d'augmenter les quantités de cuivre et de zinc et au contraire de diminuer celles de plomb contenues dans chaque individu. Elle entraîne également une diminution des concentrations en cadmium et plomb traduisant une « dilution biologique » de ces métaux. L'augmentation de la densité de la population expérimentale a un effet négatif sur les quantités de cuivre et de zinc contenues dans les individus. A âge identique, les individus les plus grands présentent des concentrations plus faibles en cuivre et zinc et plus élevées en cadmium et plomb.L'utilisation des eaux marines souterraines présente deux avantages: une production algale intense à un coût économique négligeable et la possibilité par échange thermique de réchauffer en hiver les eaux marines naturelles et ainsi de maintenir une croissance des mollusques toute l'année. L'emploi des eaux de forage n'entraîne aucun effet néfaste dans les phénomènes de bioaccumulation des métaux, du moins pour ceux étudiés ici : cadmium, cuivre, plomb et zinc.Metal bioaccumulation in bivalves may occur as a consequence of the ingestion of inert or living particles with fixed trace elements. The best experiments like those carried out by BORCHARDT (1983, 1985) concerning Cd in mussels have shown that the role suspended matter plays in the contamination of molluscs is insignificant. But, however reliable the experimental methodologies, laboratory conditions never reproduce perfectly natural phenomena. We planned therefore to restudy the problem by using a largescale experiment where the procedure was characterized by a restricted number of controlled parameters and the organisms as close as possible to the real conditions.During an experimental nursing of young carpet shells, we assessed the influence of various controlled quantifies of phytoplankton and of experimental population density on the transfer of metal from their environment to molluscs.Carpet-shell brood (Ruditapes philippinarum) was distributed in several cylindrical containers the bottom of which consisted in a sieve. Food and seawater were renewed continuously by means of an ascending current (BAUD et BACHER, 1990). Nursing assays were carried out during summer over a period of 74 days. Eight groups of carpet shells were constituted according to food supplies (0, lx, 2x and 4x of Skeletonema costatum grown upon underground seawater plus natural phytoplankton) and population density (25 000 or 50 000 individuals per experimental container). Young molluscs were fed according to a cycle of 3 h-feeding periods and 2 h-periods with no food alternately. The average concentrations of algal cells in mollusc breeding seawater were 17.5, 35 and 70.103 cells/L. This seawater was renewed at a flow rate of 3 m3/h.At the end of the nursing period, molluscs exposed to different experimental conditions were separated by using sieves of different mesh-size (6, 8 and 10 mm). Young carpet shells were purged for 36 h in order to limit the overvaluation of bioaccumulated metal levels due to ingested matter (AMIARD-TRIQUET et al., 1984; KENNEDY, 1986). In each experimental and size-related categories, 90 individuals were sampled and divided into 3 groups of 30 specimens.In these groups, soft tissues were separated from the shells and oven-dried at 80 °C for 48 h. The dry samples were powdered and three aliquot parts of about 100 mg each were digested with 1 ml of concentrated nitric acid (HNO3, Suprapur) at 95 °C for 1 h. Then the trace element analyses were performed in this solution diluted with deionized water by dame (Zn) or by flameless (Cd, Cu, Pb) atomic absorption spectrophotometry using the Zeeman effect (AMIARD et al., 1987).The influence of both food supplies and experimental population density on the dry weight of soil tissues of young carpet shells, their metal concentration and body burdens were examined by means of multi-linear regression analysis.Increasing body burdens of Cu (4) and Zn (5) and decreasing body burden of Pb (3), corresponded to more abundant food supplies. The increase of phytoplankton supplies induced a decrease of Cd (6) and Pb (7) concentrations as a consequence of a « biological dilution » of these metals. Increasing density induced a depletion of Cu (4) and Zn (5) body burdens. Among individuals of the same age, the biggest ones exhibited the lowest concentrations of Cu and Zn (8 and 9) and the highest concentrations of Cd and Pb (6 and 7).Increased food supplies induce a biological dilution of Cd and Pb in young carpet-shells. These results are in agreement with previous data concerning Cd, Cu, Pb and Zn in different species (MACKAY et al., 1975; BOYDEN, 1971; PHELPS et al., 1985; BERTHET, 1986). Thus front a sanitary point of view, the use of ground seawater for algal culture is not a risk since metal concentrations in molluscs are not enhanced

    Sensory diversity of fonio landraces from West Africa

    Get PDF
    This study aims to establish if there is some sensory variability among fonio landraces. Fonio, the oldest indigenous and very tasty cereal growing in West Africa, is usually consumed as a couscous. Group interviews of consumers were conducted in Bamako, Mali to identify the main quality criteria of a cooked grain. Fonio grain must be swollen, not sticky with a soft consistency, pale and containing low impurities. Sensory properties of 20 fonio landraces from Mali, Guinea and Burkina Faso were established using a descriptive sensory analysis. Five sensory descriptors were chosen among the quality criteria. Each landrace was tasted and scored in triplicate by a group of 18 trained panellists. Principal component analysis and hierarchical cluster analysis were used. The 20 landraces clustered into four sensory classes. Sensory criteria of variability were first visual characteristics (colour and impurities) and then the consistency of cooked grains. Landraces from Guinea and Mali were variable for both visual and textural characteristics; those from Burkina Faso appeared to be more homo-genous. The sensory variability of fonio offers to processors, who intend to promote this tiny cereal both in the sub-region and beyond, the possibility to choose adapted landraces to develop new products.Keywords: Digitaria exilis, fonio, landraces, cooked grain, sensory variability, MaliAfrican Journal of Biotechnology Vol. 12(15), pp. 1836-184

    Study of shock waves generation, hot electron production and role of parametric instabilities in an intensity regime relevant for the shock ignition

    Get PDF
    We present experimental results at intensities relevant to Shock Ignition obtained at the sub-ns Prague Asterix Laser System in 2012 . We studied shock waves produced by laser-matter interaction in presence of a pre-plasma. We used a first beam at 1ω (1315 nm) at 7 × 10 13 W/cm 2 to create a pre-plasma on the front side of the target and a second at 3ω (438 nm) at ∼ 10 16 W/cm 2 to create the shock wave. Multilayer targets composed of 25 (or 40 μm) of plastic (doped with Cl), 5 μm of Cu (for Kα diagnostics) and 20 μm of Al for shock measurement were used. We used X-ray spectroscopy of Cl to evaluate the plasma temperature, Kα imaging and spectroscopy to evaluate spatial and spectral properties of the fast electrons and a streak camera for shock breakout measurements. Parametric instabilities (Stimulated Raman Scattering, Stimulated Brillouin Scattering and Two Plasmon Decay) were studied by collecting the back scattered light and analysing its spectrum. Back scattered energy was measured with calorimeters. To evaluate the maximum pressure reached in our experiment we performed hydro simulations with CHIC and DUED codes. The maximum shock pressure generated in our experiment at the front side of the target during laser-interaction is 90 Mbar. The conversion efficiency into hot electrons was estimated to be of the order of ∼ 0.1% and their mean energy in the order ∼50 keV. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distributio

    Rudimentary G-Quadruplex-Based Telomere Capping In Saccharomyces Cerevisiae

    Get PDF
    Telomere capping conceals chromosome ends from exonucleases and checkpoints, but the full range of capping mechanisms is not well defined. Telomeres have the potential to form G-quadruplex (G4) DNA, although evidence for telomere G4 DNA function in vivo is limited. In budding yeast, capping requires the Cdc13 protein and is lost at nonpermissive temperatures in cdc13-1 mutants. Here, we use several independent G4 DNA-stabilizing treatments to suppress cdc13-1 capping defects. These include overexpression of three different G4 DNA binding proteins, loss of the G4 DNA unwinding helicase Sgs1, or treatment with small molecule G4 DNA ligands. In vitro, we show that protein-bound G4 DNA at a 3\u27 overhang inhibits 5\u27-\u3e 3\u27 resection of a paired strand by exonuclease I. These findings demonstrate that, at least in the absence of full natural capping, G4 DNA can play a positive role at telomeres in vivo

    Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils

    Get PDF
    Matter can be transferred into energy and the opposite transformation is also possible by use of high-power lasers. A laser pulse in plasma can convert its energy into γ-rays and then e −e + pairs via the multi-photon Breit-Wheeler process. Production of dense positrons at GeV energies is very challenging since extremely high laser intensity ∼ 1024 Wcm−2 is required. Here we propose an all-optical scheme for ultra-bright γ-ray emission and dense positron production with lasers at intensity of 1022−23 Wcm−2 . By irradiating two colliding elliptically-polarized lasers onto two diamondlike carbon foils, electrons in the focal region of one foil are rapidly accelerated by the laser radiation pressure and interact with the other intense laser pulse which penetrates through the second foil due to relativistically induced foil transparency. This symmetric configuration enables efficient Compton back-scattering and results in ultra-bright γ-photon emission with brightness of ∼ 1025 photons/s/mm2 /mrad2 /0.1%BW at 15 MeV and intensity of 5×1023 Wcm−2 . Our first three-dimensional simulation with quantum-electrodynamics incorporated shows that a GeV positron beam with density of 2.5×1022 cm−3 and flux of 1.6×1010/shot is achieved. Collective effects of the pair plasma may be also triggered, offering a window on investigating laboratory astrophysics at PW laser facilities

    The Yeast Pif1 Helicase Prevents Genomic Instability Caused by G-Quadruplex-Forming CEB1 Sequences In Vivo

    Get PDF
    In budding yeast, the Pif1 DNA helicase is involved in the maintenance of both nuclear and mitochondrial genomes, but its role in these processes is still poorly understood. Here, we provide evidence for a new Pif1 function by demonstrating that its absence promotes genetic instability of alleles of the G-rich human minisatellite CEB1 inserted in the Saccharomyces cerevisiae genome, but not of other tandem repeats. Inactivation of other DNA helicases, including Sgs1, had no effect on CEB1 stability. In vitro, we show that CEB1 repeats formed stable G-quadruplex (G4) secondary structures and the Pif1 protein unwinds these structures more efficiently than regular B-DNA. Finally, synthetic CEB1 arrays in which we mutated the potential G4-forming sequences were no longer destabilized in pif1Δ cells. Hence, we conclude that CEB1 instability in pif1Δ cells depends on the potential to form G-quadruplex structures, suggesting that Pif1 could play a role in the metabolism of G4-forming sequences

    G-quadruplex structures mark human regulatory chromatin

    Get PDF
    G-quadruplex (G4) structural motifs have been linked to transcription, replication and genome instability and are implicated in cancer and other diseases. However, it is crucial to demonstrate the bona fide formation of G4 structures within an endogenous chromatin context. Herein we address this through the development of G4 ChIP-seq, an antibody-based G4 chromatin immunoprecipitation and high-throughput sequencing approach. We find ∼10,000 G4 structures in human chromatin, predominantly in regulatory, nucleosome-depleted regions. G4 structures are enriched in the promoters and 5' UTRs of highly transcribed genes, particularly in genes related to cancer and in somatic copy number amplifications, such as MYC\textit{MYC}. Strikingly, de novo\textit{de novo} and enhanced G4 formation are associated with increased transcriptional activity, as shown by HDAC inhibitor-induced chromatin relaxation and observed in immortalized as compared to normal cellular states. Our findings show that regulatory, nucleosome-depleted chromatin and elevated transcription shape the endogenous human G4 DNA landscape.European Molecular Biology Organization (EMBO Long-Term Fellowship), University of Cambridge, Cancer Research UK (Grant ID: C14303/A17197), Wellcome Trust (Grant ID: 099232/z/12/z

    G-Quadruplex DNA Sequences Are Evolutionarily Conserved and Associated with Distinct Genomic Features in Saccharomyces cerevisiae

    Get PDF
    G-quadruplex DNA is a four-stranded DNA structure formed by non-Watson-Crick base pairing between stacked sets of four guanines. Many possible functions have been proposed for this structure, but its in vivo role in the cell is still largely unresolved. We carried out a genome-wide survey of the evolutionary conservation of regions with the potential to form G-quadruplex DNA structures (G4 DNA motifs) across seven yeast species. We found that G4 DNA motifs were significantly more conserved than expected by chance, and the nucleotide-level conservation patterns suggested that the motif conservation was the result of the formation of G4 DNA structures. We characterized the association of conserved and non-conserved G4 DNA motifs in Saccharomyces cerevisiae with more than 40 known genome features and gene classes. Our comprehensive, integrated evolutionary and functional analysis confirmed the previously observed associations of G4 DNA motifs with promoter regions and the rDNA, and it identified several previously unrecognized associations of G4 DNA motifs with genomic features, such as mitotic and meiotic double-strand break sites (DSBs). Conserved G4 DNA motifs maintained strong associations with promoters and the rDNA, but not with DSBs. We also performed the first analysis of G4 DNA motifs in the mitochondria, and surprisingly found a tenfold higher concentration of the motifs in the AT-rich yeast mitochondrial DNA than in nuclear DNA. The evolutionary conservation of the G4 DNA motif and its association with specific genome features supports the hypothesis that G4 DNA has in vivo functions that are under evolutionary constraint
    corecore