17,681 research outputs found

    The Electronic States of Two Oppositely doped Mott Insulators Bilayers

    Full text link
    We study the effect of Coulomb interaction between two oppositely doped low-dimensional tJ model systems. We exactly show that, in the one-dimensional case, an arbitrarily weak interaction leads to the formation of charge neutral electron-hole pairs. We then use two different mean-field theories to address the two-dimensional case, where inter-layer excitons also form and condense. We propose that this results in new features which have no analog in single layers, such as the emergence of an insulating spin liquid phase. Our simple bilayer model might have relevance to the physics of doped Mott insulator interfaces and of the new four layer Ba2CaCu4O8 compound.Comment: 4 pages, 1 figur

    Microstrip resonator for microwaves with controllable polarization

    Full text link
    In this work the authors implemented a resonator based upon microstrip cavities that permits the generation of microwaves with arbitrary polarization. Design, simulation, and implementation of the resonators were performed using standard printed circuit boards. The electric field distribution was mapped using a scanning probe cavity perturbation technique. Electron spin resonance using a standard marker was carried out in order to verify the polarization control from linear to circular.Comment: 3 pages, 3 figures, submitted to Appl. Phys. Let

    Analysis of the temperature influence on Langmuir probe measurements on the basis of gyrofluid simulations

    Full text link
    The influence of the temperature and its fluctuations on the ion saturation current and the floating potential, which are typical quantities measured by Langmuir probes in the turbulent edge region of fusion plasmas, is analysed by global nonlinear gyrofluid simulations for two exemplary parameter regimes. The numerical simulation facilitates a direct access to densities, temperatures and the plasma potential at different radial positions around the separatrix. This allows a comparison between raw data and the calculated ion saturation current and floating potential within the simulation. Calculations of the fluctuation-induced radial particle flux and its statistical properties reveal significant differences to the actual values at all radial positions of the simulation domain, if the floating potential and the temperature averaged density inferred from the ion saturation current is used.Comment: Submitted to Plasma Physics and Controlled Fusio

    Sustainable management of miombo woodlands in the Northern part of Mozambique (Niassa National Reserve - NNR).

    Get PDF
    Poster presented at Commiting Science to Global Development. Lisbon (Portugal). 29-30 Sep 2009

    Computer simulations of dynamical properties of fluids: atomistic-continuum hybrid methods

    Get PDF
    Computational methods for the calculation of dynamical properties of fluids might consider the system as a continuum or as an assembly of molecules. Molecular dynamics (MD) simulation includes molecular resolution, whereas computational fluid dynamics (CFD) considers the fluid as a continuum. This work provides a review of hybrid methods MD/CFD recently proposed in the literature. Theoretical foundations, basic approaches of computational methods, and dynamical properties typically calculated by MD and CFD are first presented in order to appreciate the similarities and differences between these two methods. Then, methods for coupling MD and CFD, and applications of hybrid simulations MD/CFD, are presented.FAPESPCNP
    corecore