Degradation of Rhodamine by Fenton process using Magnetic ferrites Nanoparticles

C. C. Arruda, T. R. Giraldi, C. Ribeiro

Embrapa – Instrumentação Agropecuária, São Carlos-SP, Brazil

This work consists in the study of Rhodamine B (RB) degradation by the Fenton process [1], using magnetic ferrites nanoparticles. The main objective is to verify the effectiveness of the Fe₃O₄ nanoparticles in degradation of pollutant in water. The Fe₃O₄ nanoparticles were obtained by the Polymeric Precursor's Method [2]. The syntheses was done from FeSO₄ and Fe₂(SO₄)₃, using citric acid (C₆H₈O₇) as a complexant agent, and ethylene-glycol (C₂H₄ (OH)₂) as a polymerizing agent. The solutions were submitted to a thermal treatment at 450°C. The performance of these nanoparticles was evaluated as heterogeneous catalyst through measures of the kinetics of degradation of RB in the reaction Fenton (with addition of H₂O₂). Finally, in order to study the different compositions, CoFe₂O₄ and Fe^{II}CoFe^{III}₄O₈ ferrite was synthesized by the same method. The results show that the Fe₃O₄ and Fe^{II}CoFe^{III}₄O₈ ferrites present significant efficiency in the degradation of RB. On the other hand, practically it doesn't there be degradation in presence of CoFe₂O₄ nanoparticles.

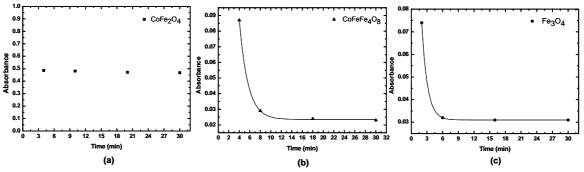


Figure 1: Degradation of Rhodamine B / H₂O₂ with different ferrites compositions.

References:

- [1] Nogueira, R.; Silva, M. & Trovo, A., Solar Energy 79(4), (2005), 384.
- [2] Arima, M. et al, J. Am. Ceram. Soc. 79(11), (1996), 2847.

Keywords: Magnetic ferrites, Fenton process, Rhodamine B.

cezararruda@yahoo.com.br

Rua XV de Novembro, 1452 - Centro - São Carlos-SP - Brazil - CEP: 13560-970