138 research outputs found

    Extensin network formation in Vitis vinifera callus cells is an essential and causal event in rapid and H2O2-induced reduction in primary cell wall hydration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extensin deposition is considered important for the correct assembly and biophysical properties of primary cell walls, with consequences to plant resistance to pathogens, tissue morphology, cell adhesion and extension growth. However, evidence for a direct and causal role for the extensin network formation in changes to cell wall properties has been lacking.</p> <p>Results</p> <p>Hydrogen peroxide treatment of grapevine (<it>Vitis vinifera </it>cv. Touriga) callus cell walls was seen to induce a marked reduction in their hydration and thickness. An analysis of matrix proteins demonstrated this occurs with the insolubilisation of an abundant protein, GvP1, which displays a primary structure and post-translational modifications typical of dicotyledon extensins. The hydration of callus cell walls free from saline-soluble proteins did not change in response to H<sub>2</sub>O<sub>2</sub>, but fully regained this capacity after addition of extensin-rich saline extracts. To assay the specific contribution of GvP1 cross-linking and other wall matrix proteins to the reduction in hydration, GvP1 levels in cell walls were manipulated <it>in vitro </it>by binding selected fractions of extracellular proteins and their effect on wall hydration during H<sub>2</sub>O<sub>2 </sub>incubation assayed.</p> <p>Conclusions</p> <p>This approach allowed us to conclude that a peroxidase-mediated formation of a covalently linked network of GvP1 is essential and causal in the reduction of grapevine callus wall hydration in response to H<sub>2</sub>O<sub>2</sub>. Importantly, this approach also indicated that extensin network effects on hydration was only partially irreversible and remained sensitive to changes in matrix charge. We discuss this mechanism and the importance of these changes to primary wall properties in the light of extensin distribution in dicotyledons.</p

    An insight into the sialome of Simulium guianense (DIPTERA:SIMulIIDAE), the main vector of River Blindness Disease in Brazil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the composition and function of the saliva in black flies such as <it>Simulium guianense</it>, the main vector of river blindness disease in Brazil. The complex salivary potion of hematophagous arthropods counteracts their host's hemostasis, inflammation, and immunity.</p> <p>Results</p> <p>Transcriptome analysis revealed ubiquitous salivary protein families--such as the Antigen-5, Yellow, Kunitz domain, and serine proteases--in the <it>S. guianense </it>sialotranscriptome. Insect-specific families were also found. About 63.4% of all secreted products revealed protein families found only in <it>Simulium</it>. Additionally, we found a novel peptide similar to kunitoxin with a structure distantly related to serine protease inhibitors. This study revealed a relative increase of transcripts of the SVEP protein family when compared with <it>Simulium vittatum </it>and <it>S. nigrimanum </it>sialotranscriptomes. We were able to extract coding sequences from 164 proteins associated with blood and sugar feeding, the majority of which were confirmed by proteome analysis.</p> <p>Conclusions</p> <p>Our results contribute to understanding the role of <it>Simulium </it>saliva in transmission of <it>Onchocerca volvulus </it>and evolution of salivary proteins in black flies. It also consists of a platform for mining novel anti-hemostatic compounds, vaccine candidates against filariasis, and immuno-epidemiologic markers of vector exposure.</p

    Mitochondrial echoes of first settlement and genetic continuity in El Salvador

    Get PDF
    Background: From Paleo-Indian times to recent historical episodes, the Mesoamerican isthmus played an important role in the distribution and patterns of variability all around the double American continent. However, the amount of genetic information currently available on Central American continental populations is very scarce. In order to shed light on the role of Mesoamerica in the peopling of the New World, the present study focuses on the analysis of the mtDNA variation in a population sample from El Salvador. Methodology/Principal Findings: We have carried out DNA sequencing of the entire control region of the mitochondrial DNA (mtDNA) genome in 90 individuals from El Salvador. We have also compiled more than 3,985 control region profiles from the public domain and the literature in order to carry out inter-population comparisons. The results reveal a predominant Native American component in this region: by far, the most prevalent mtDNA haplogroup in this country (at ~90%) is A2, in contrast with other North, Meso- and South American populations. Haplogroup A2 shows a star-like phylogeny and is very diverse with a substantial proportion of mtDNAs (45%; sequence range 16090–16365) still unobserved in other American populations. Two different Bayesian approaches used to estimate admixture proportions in El Salvador shows that the majority of the mtDNAs observed come from North America. A preliminary founder analysis indicates that the settlement of El Salvador occurred about 13,400±5,200 Y.B.P.. The founder age of A2 in El Salvador is close to the overall age of A2 in America, which suggests that the colonization of this region occurred within a few thousand years of the initial expansion into the Americas. Conclusions/Significance: As a whole, the results are compatible with the hypothesis that today's A2 variability in El Salvador represents to a large extent the indigenous component of the region. Concordant with this hypothesis is also the observation of a very limited contribution from European and African women (~5%). This implies that the Atlantic slave trade had a very small demographic impact in El Salvador in contrast to its transformation of the gene pool in neighbouring populations from the Caribbean facade

    Chromosome copy number changes carry prognostic information independent of KIT/PDGFRA point mutations in gastrointestinal stromal tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oncogenic point mutations in <it>KIT </it>or <it>PDGFRA </it>are recognized as the primary events responsible for the pathogenesis of most gastrointestinal stromal tumors (GIST), but additional genomic alterations are frequent and presumably required for tumor progression. The relative contribution of such alterations for the biology and clinical behavior of GIST, however, remains elusive.</p> <p>Methods</p> <p>In the present study, somatic mutations in <it>KIT </it>and <it>PDGFRA </it>were evaluated by direct sequencing analysis in a consecutive series of 80 GIST patients. For a subset of 29 tumors, comparative genomic hybridization was additionally used to screen for chromosome copy number aberrations. Genotype and genomic findings were cross-tabulated and compared with available clinical and follow-up data.</p> <p>Results</p> <p>We report an overall mutation frequency of 87.5%, with 76.25% of the tumors showing alterations in <it>KIT </it>and 11.25% in <it>PDGFRA</it>. Secondary <it>KIT </it>mutations were additionally found in two of four samples obtained after imatinib treatment. Chromosomal imbalances were detected in 25 out of 29 tumors (86%), namely losses at 14q (88% of abnormal cases), 22q (44%), 1p (44%), and 15q (36%), and gains at 1q (16%) and 12q (20%). In addition to clinico-pathological high-risk groups, patients with <it>KIT </it>mutations, genomic complexity, genomic gains and deletions at either 1p or 22q showed a significantly shorter disease-free survival. Furthermore, genomic complexity was the best predictor of disease progression in multivariate analysis.</p> <p>Conclusions</p> <p>In addition to <it>KIT/PDGFRA </it>mutational status, our findings indicate that secondary chromosomal changes contribute significantly to tumor development and progression of GIST and that genomic complexity carries independent prognostic value that complements clinico-pathological and genotype information.</p

    Microarray-Based Analysis of Differential Gene Expression between Infective and Noninfective Larvae of Strongyloides stercoralis

    Get PDF
    Strongyloides stercoralis is a soil-transmitted helminth that affects an estimated 30–100 million people worldwide. Chronically infected persons who are exposed to corticosteroids can develop disseminated disease, which carries a high mortality (87–100%) if untreated. Despite this, little is known about the fundamental biology of this parasite, including the features that enable infection. We developed the first DNA microarray for this parasite and used it to compare infective third-stage larvae (L3i) with non-infective first stage larvae (L1). Using this method, we identified 935 differentially expressed genes. Functional characterization of these genes revealed L3i biased expression of heat shock proteins and genes with products that have previously been shown to be immunoreactive in infected humans. Genes putatively involved in transcription were found to have L1 biased expression. Potential chemotherapeutic and vaccine targets such as far-1, ucr 2.1 and hsp-90 were identified for further study

    Immunity of an Alternative Host Can Be Overcome by Higher Densities of Its Parasitoids Palmistichus elaeisis and Trichospilus diatraeae

    Get PDF
    Interactions of the parasitoids Palmistichus elaeisis Delvare & LaSalle and Trichospilus diatraeae Cherian & Margabandhu (Hymenoptera: Eulophidae) with its alternative host Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae) affect the success or failure of the mass production of these parasitoids for use in integrated pest management programs. The aim of this study was to evaluate changes in the cellular defense and encapsulation ability of A. gemmatalis pupae against P. elaeisis or T. diatraeae in adult parasitoid densities of 1, 3, 5, 7, 9, 11 or 13 parasitoids/pupae. We evaluated the total quantity of circulating hemocytes and the encapsulation rate versus density. Increasing parasitoid density reduced the total number of hemocytes in the hemolymph and the encapsulation rate by parasitized pupae. Furthermore, densities of P. elaeisis above 5 parasitoids/pupae caused higher reduction in total hemocyte numbers. The encapsulation rate fell with increasing parasitoid density. However, parasitic invasion by both species induced generally similar responses. The reduction in defensive capacity of A. gemmatalis is related to the adjustment of the density of these parasitoids to their development in this host. Thus, the role of the density of P. elaeisis or T. diatraeae by pupa is induced suppression of cellular defense and encapsulation of the host, even without them possesses a co-evolutionary history. Furthermore, these findings can predict the success of P. elaeisis and T. diatraeae in the control of insect pests through the use of immunology as a tool for evaluation of natural enemies
    corecore