2,425 research outputs found

    Counterexample Guided Inductive Optimization Applied to Mobile Robots Path Planning (Extended Version)

    Full text link
    We describe and evaluate a novel optimization-based off-line path planning algorithm for mobile robots based on the Counterexample-Guided Inductive Optimization (CEGIO) technique. CEGIO iteratively employs counterexamples generated from Boolean Satisfiability (SAT) and Satisfiability Modulo Theories (SMT) solvers, in order to guide the optimization process and to ensure global optimization. This paper marks the first application of CEGIO for planning mobile robot path. In particular, CEGIO has been successfully applied to obtain optimal two-dimensional paths for autonomous mobile robots using off-the-shelf SAT and SMT solvers.Comment: 7 pages, 14rd Latin American Robotics Symposium (LARS'2017

    INJECTABLE HYBRID SYSTEM FOR STRONTIUM LOCAL DELIVERY TO PROMOTE BONE REGENERATION

    Get PDF
    In bone tissue regeneration strategies, injectable bone substitutes are very attractive since they can be applied with minimally invasive surgical procedures and can perfectly fill irregular defects created in cases of trauma, infection or tumor resection. These materials must combine adequate mechanical properties with the ability to induce new bone formation. Incorporating strontium (Sr) in bone substitute biomaterials may be a strategy to achieve high Sr concentrations, not in a systemic but in a local environment, taking advantage of the osteoanabolic and anti-osteoclastic activity of Sr, for the enhancement of new bone formation. In this context, the aim of the present work was to evaluate the response of a Sr-hybrid injectable system for bone regeneration, designed by our group, consisting of hydroxyapatite microspheres doped with Sr and an alginate vehicle crosslinked in situ with Sr, in an in vivo scenario. Two different animal models were used, rat (Wistar) and sheep (Merino Branco) critical sized bone defect. Non Sr-doped similar materials (Ca-hybrid) or empty defects were used as control. Sr-hybrid system led to an increased bone formation in both center and periphery of a rat critical sized defect compared to a non Sr–doped similar system, where new bone formation was restricted to the periphery. Moreover newly formed bone was identified as early as one week after its implantation in a sheep model. After eight weeks, the bone surrounded the microspheres, both in the periphery and in the center of the defect. Most importantly, the hybrid system provided a scaffold for cell migration and tissue ingrowth and offered structural support, as observed in both models. The effective improvement of local bone formation suggests that this might be a promising approach for bone regeneration, especially in osteoporotic conditions

    Phylogenetic relationships of Chanidae (Teleostei: Gonorynchiformes) as impacted by Dastilbe moraesi, from the Sanfranciscana basin, Early Cretaceous of Brazil

    Full text link
    Fossil gonorynchiform fishes range from the Lower Cretaceous to the early Miocene, and are represented by a few dozen living species. The order is currently divided into two major clades: Gonorynchoidei, which includes the families Gonorynchidae and Kneriidae, and Chanoidei, encompassing a single family, Chanidae, with a single recent species, the Indo-Pacific Chanos chanos, and several fossil taxa. Chanidae includes some poorly known taxa, such as Dastilbe moraesi, described from the Aptian (Lower Cretaceous) of the Areado Formation, Sanfranciscana basin, Brazil. This species is currently considered to be a junior synonym of the type species of its genus, Dastilbe crandalli, from Santana Formation, Aptian, northeastern Brazil. The analysis of abundant D. moraesi specimens revealed several new morphological features, many of which had previously been misinterpreted. Dastilbe moraesi was incorporated into a gonorynchiform character matrix as revised and modified for the Chanidae. We obtained a single most parsimonious tree in which D. moraesi is distinct and phylogenetically apart from D. crandalli. According our analysis, D. moraesi forms a sister pair with Chanos, a clade which is closely related to Tharrhias, all composing the tribe ChaniniGonorynchiformes fósseis ocorrem desde do Cretáceo inferior ao Mioceno inferior, e são representados por alguns representantes viventes. A ordem está dividida atualmente em dois clados principais: Gonorynchoidei, que inclui as famílias Gonorynchidae e Kneriidae, e Chanoidei, compreendendo uma única família, Chanidae, com uma única espécie vivente, Chanos chanos, do Indo-Pacífico, além de vários representantes fósseis. Chanidae inclui alguns táxons problemáticos, tais como Dastilbe moraesi, descrito do Aptiano (Cretáceo Inferior) da Formação Areado, bacia Sanfranciscana, Brasil. Esta espécie é atualmente considerada um sinônimo júnior da espécie-tipo de seu gênero, Dastilbe crandalli, da Formação Santana, Aptiano do nordeste do Brasil. A análise de abundante material de D. moraesi revelou várias novas características anatômicas, muitas das quais haviam sido previamente mal interpretadas. Dastilbe moraesi foi incorporado em uma matriz revisada de caracteres da família Chanidae. Nós obtivemos uma única árvore mais parcimoniosa na qual D. moraesi é distinto e filogeneticamente distante de D. crandalli. De acordo com nossa análise, D. moraesi é o grupo-irmão de Chanos, um clado intimamente relacionado a Tharrhias, com todos compondo a tribo ChaniniThis study was supported by CNPq (process # 401818/2010-1) and project CGL2013-42643P, Ministerio de Ciencia e Innovación de Españ

    Strain sensors based on knocked down carbon nanotubes and bucky papers thin films

    Get PDF
    Recently, carbon nanotubes (CNTs) thin films have been widely applied in sensing applications due to their piezoresistive response. Furthermore, CNT anisotropic electric properties, due to its alignment, can provide useful information regarding strain direction. We present a comparative study between knocked down vertically aligned CNT based sensor, reported in our previous work [1], and CNT bucky papers (BP) based sensors. For this purpose, commercial multi-wall carbon nanotubes (MWCNTs) were dispersed in two different solvents, dimethylformamide (DMF) and ethanol, vacuum filtrated and dried. From these freestanding BP thin films, 10x10 mm squares were cut off and transferred to polyimide (PI) films. The relative electric resistance response and sensitivity of the strained samples was measured and compared with the knocked down CNT/PI based sensor. Moreover, the morphology of the samples was characterized by scanning electron microscopy (SEM). The results showed a high sensitivity to strain, however knocked down CNT/PI based sensor presented better mechanical performance and an anisotropic behaviour that can be used to infer strain direction.FCT, Programa MIT Portugal, projeto "IAMAT (Introduction of Advanced Materials Technologies into New Product Development for the Mobility Industries

    IN VIVO STUDY OF THE EFFECT OF A STRONTIUM-­‐RICH INJECTABLE SYSTEM ON BONE REGENERATION, USING A SHEEP MODEL

    Get PDF
    Bone has the capacity to regenerate as part of the repair process,being newly formed boné indistinguishable from the adjacente uninjured bone. However,there are cases in which boné regeneration is required in large quantity, beyond the normal potential for self-­‐healing, such as for lesions caused by trauma, infection, tumour resection or cases in which the regenerative process is compromised such as avascular necrosis and osteoporosis. Biomaterials such as alginate are very promising due to its ability to form hydrogels in situ under mild conditions in the presence of divalente cations. The combination with ceramic microspheres results in a mechanically improved injectable system, adequate for minimally invasive procedures. Moreover, the combination with chemical elements such as strontium, described as promoter of boné formation, inhibiting boné resorption provides ion Exchange between the implanted biomaterial and surrounding tissue, enhancing boné regeneration. Our goal is to study in na invivo sheep model, the effect of na injectable system composed of strontium doped hydroxyapatite microspheres, delivered in na alginate vehicle, crosslinked with strontium
    corecore