1,784 research outputs found

    Electromyographic and magnetic resonance imaging evaluations of individuals with patellofemoral pain syndrome

    Get PDF
    OBJETIVOS: Analisar a atividade elétrica (EMG) dos músculos vasto medial oblíquo (VMO), vasto lateral longo (VLL) e vasto lateral oblíquo (VLO) de indivíduos com síndrome da dor femoropatelar (SDFP) durante contração isométrica voluntária máxima (CIVM) de extensão da perna com o joelho a 30(0), a dor por meio da Escala Visual Analógica (EVA) e o posicionamento da patela por meio da ressonância magnética nuclear por imagem (RMNI). MÉTODOS: Avaliaram-se 12 mulheres com SDFP e 12 clinicamente normais, que realizaram cinco CIVM de extensão da perna no ângulo de 30(0) para análise da EMG. Avaliou-se o ângulo do sulco (AS), ângulo de congruência (AC), ângulo de inclinação patelar (AIP) e deslocamento patelar (DP) pela RMNI. Utilizaram-se testes estatísticos: ANOVA, análise de variância de medidas repetidas para EMG; o teste Mann-Whitney U para análise da RMNI; o teste de correlação de Pearson (r) entre EMG e RMNI e análise de variância one-way para avaliação da dor (p<0,05). RESULTADOS: Verificou-se maior atividade elétrica do músculo VLL em relação ao VMO no grupo com SDFP. Em ambos os grupos, os músculos VMO e VLL apresentaram maior atividade elétrica que o VLO. Para o grupo SDFP, a RMNI revelou maiores valores do AS e menores do AC, e verificou-se uma correlação negativa entre VMO e AIP. CONCLUSÃO: Os dados sugerem que maior atividade elétrica do VLL, juntamente com o aumento do AS e diminuição do AC, possam ser fatores favorecedores da instabilidade patelar nos indivíduos com SDFP.OBJECTIVES: To analyze the electrical activity of the vastus medialis obliquus (VMO), vastus lateralis longus (VLL) and vastus lateralis obliquus (VLO) muscles of individuals with patellofemoral pain syndrome (PFPS) during maximum voluntary isometric contraction (MVIC) of lower leg extension with the knee at 30°; to assess pain using a visual analogue scale (VAS); and to assess patellar positioning using magnetic resonance imaging (MRI). METHODS: Twelve women with PFPS and 12 clinically normal women were evaluated. They performed five MVICs of lower leg extension at 30° for electromyographic (EMG) analysis. Using MRI, the sulcus angle (SA), congruence angle (CA), patellar tilt angle (PTA) and patellar displacement (PD) were obtained. The following statistical tests were used: analysis of variance (ANOVA) for repeated measurements to assess EMGs; Mann-Whitney U test to analyze MRIs; Pearson's (r) correlation test between EMGs and MRIs; and one-way ANOVA to evaluate pain (p<0.05). RESULTS: In the PFPS group, there was greater electrical activity in the VLL than in the VMO. In both groups, there was greater electrical activity in the VMO and VLL than in the VLO. In the PFPS group, the MRI showed higher SA and lower CA values, and there was a negative correlation between the VMO and the PTA. CONCLUSION: The data suggest that, in individuals with PFPS, greater electrical activity in the VLL combined with an increased SA and a decreased CA may contribute to patellar instability.Conselho Nacional de Pesquisa (CNPq

    Oral Complications of HIV Disease

    Get PDF
    Oral lesions are among the early signs of HIV infection and can predict its progression to acquired immunodeficiency syndrome (AIDS). A better understanding of the oral manifestations of AIDS in both adults and children has implications for all health care professionals. The knowledge of such alterations would allow for early recognition of HIV-infected patients. The present paper reviews epidemiology, relevant aspects of HIV infection related to the mouth in both adults and children, as well as current trends in antiretroviral therapy and its connection with orofacial manifestations related to AIDS

    Cellulose from sugarcane bagasse as a potential prebiotic agent

    Get PDF
    Organic farming practices have been slowly replacing intensive agriculture with the use of plant growth promoting bacteria as key factor, as these bacteria interact effectively with plants and increase crop yields. However, despite the potential of bioinoculants, its usage in agriculture is still limited as their efficacy also depends upon other abiotic factors such as the soil type and its nutrients. A novel approach to bypass this limitation is the introduction of prebiotic agents to increase the richness of the soil and thus promote bacterial growth (Arif et., al 2020). Among the possible alternatives for soil supplementation, cellulose constitutes one of the best choices, as it is a renewable carbon source, widely abundant in nature and for which a great number of microorganisms produce enzymes. The aim of this work is to evaluate the prebiotic potential of cellulose, extracted from sugarcane bagasse, as prebiotic agent. To that end, cellulose was firstly extracted from sugarcane bagasse through an optimized procedure comprising an alkaline extraction with sodium hydroxide followed by a bleaching process with hydrogen peroxide. The capacity to promote the growth (prebiotic effect) of three soil representative microorganisms and nitrogen fixators i.e., Rhodococcus sp. EC35, Pseudomonas azotoformans and Chryseobacterium humi was evaluated for two cellulose extracts (i.e., raw cellulose and cellulose pulp) obtained from sugarcane bagasse. The results showed that the extraction process yielded ca. 63% and 42% for raw cellulose and cellulose pulp, respectively, being both extracts effective as prebiotic agents for the target microorganisms. Growth rates of 38 and 68% for Rhodococcus sp., and of 67 and 84% for C. humi was found for cellulose pulp and raw cellulose, respectively. On the other hand, for P. azotoformans, raw cellulose had no impact upon the growth rate, while cellulose pulp lead to a small decrease (ca. 7%). When comparing this data with the obtained for a standard cellulose from Sigma, it was possible to observe that the commercial cellulose was, in general, less effective as an environmental prebiotic as it only exhibited significant effects in the growth of C. humi. These results showed the potential of sugarcane bagasse as source of a natural bioinocula with prebiotic effect, thus potentiating the valorization of an industrial byproduct with low commercial value into a product with biological effect on soils supplementation.info:eu-repo/semantics/publishedVersio

    Comparative study of green and traditional routes for cellulose extraction from a sugarcane by-product

    Get PDF
    Sugarcane bagasse (SCB) is the main residue of the sugarcane industry and a promising renewable and sustainable lignocellulosic material. The cellulose component of SCB, present at 40–50%, can be used to produce value-added products for various applications. Herein, we present a comprehensive and comparative study of green and traditional approaches for cellulose extraction from the by-product SCB. Green methods of extraction (deep eutectic solvents, organosolv, and hydrothermal processing) were compared to traditional methods (acid and alkaline hydrolyses). The impact of the treatments was evaluated by considering the extract yield, chemical profile, and structural properties. In addition, an evaluation of the sustainability aspects of the most promising cellulose extraction methods was performed. Among the proposed methods, autohydrolysis was the most promising approach in cellulose extraction, yielding 63.5% of a solid fraction with ca. 70% cellulose. The solid fraction showed a crystallinity index of 60.4% and typical cellulose functional groups. This approach was demonstrated to be environmentally friendly, as indicated by the green metrics assessed (E(nvironmental)-factor = 0.30 and Process Mass Intensity (PMI) = 20.5). Autohydrolysis was shown to be the most cost-effective and sustainable approach for the extraction of a cellulose-rich extract from SCB, which is extremely relevant for aiming the valorization of the most abundant by-product of the sugarcane industry.info:eu-repo/semantics/publishedVersio

    Carboxymethyl cellulose as a food emulsifier: are its days numbered?

    Get PDF
    Carboxymethyl cellulose use in industry is ubiquitous. Though it is recognized as safe by the EFSA and FDA, newer works have raised concerns related to its safety, as in vivo studies showed evidence of gut dysbiosis associated with CMC’s presence. Herein lies the question, is CMC a gut pro-inflammatory compound? As no work addressed this question, we sought to understand whether CMC was pro-inflammatory through the immunomodulation of GI tract epithelial cells. The results showed that while CMC was not cytotoxic up to 25 mg/mL towards Caco-2, HT29-MTX and Hep G2 cells, it had an overall pro-inflammatory behavior. In a Caco-2 monolayer, CMC by itself increased IL-6, IL-8 and TNF-α secretion, with the latter increasing by 1924%, and with these increases being 9.7 times superior to the one obtained for the IL-1β pro-inflammation control. In co-culture models, an increase in secretion in the apical side, particularly for IL-6 (692% increase), was observed, and when RAW 264.7 was added, data showed a more complex scenario as stimulation of pro-inflammatory (IL-6, MCP-1 and TNF-α) and anti-inflammatory (IL-10 and IFN-β) cytokines in the basal side was observed. Considering these results, CMC may exert a pro-inflammatory effect in the intestinal lumen, and despite more studies being required, the incorporation of CMC in foodstuffs must be carefully considered in the future to minimize potential GI tract dysbiosis.info:eu-repo/semantics/publishedVersio

    Implementation of a circular bioeconomy: obtaining cellulose fibers derived from portuguese vine pruning residues for heritage conservation, oxidized with TEMPO and ultrasonic treatment

    Get PDF
    Inspired by the principles of the circular economy, using vineyard pruning residues as a source of raw materials for producing nanocellulose is a promising approach to transforming vineyard resources into value-added products. This study aimed to obtain and characterize cellulose and cellulose nanofibers from such sources. The cellulose collected from different fractions of micronized stems (500, 300, 150 μm, and retain) of vines was submitted to autohydrolysis and finally bleached. Soon, it underwent treatment via (2,2,6,6-tetrametil-piperidi-1-nil)oxil (TEMPO) oxidation and ultrasonic to obtain nanocellulose fibers. The cellulose films were obtained at a microscale thickness of 0.05 ± 0.00; 0.37 ± 0.03; 0.06 ± 0.01 e 0.030 ± 0.01 mm, with the following particle size: 500 µm, 300 µm, 150 µm, and retain (<150 µm). The bleaching efficiency of the cellulose fibers of each particle size fraction was evaluated for color through a colorimeter. In addition, the extraction of cellulose fibers was assessed by infrared with Fourier transform, and size and shape were assessed by microscopy. Differential scanning calorimetry and X-ray diffraction were performed to confirm the thermal and crystalline properties. Combining autohydrolysis with a bleaching step proved to be a promising and ecological alternative to obtain white fractions rich in cellulose. It was possible to perform the extraction of cellulose to obtain nanocellulose fibers from vine pruning residues for the development of coatings for the conservation of heritage buildings from environmental conditions through an environmentally friendly process.info:eu-repo/semantics/publishedVersio

    Design of innovative biocompatible cellulose nanostructures for the delivery and sustained release of curcumin

    Get PDF
    Poor aqueous solubility, stability and bioavailability of interesting bioactive compounds is a challenge in the development of bioactive formulations. Cellulose nanostructures are promising and sustainable carriers with unique features that may be used in enabling delivery strategies. In this work, cellulose nanocrystals (CNC) and cellulose nanofibers were investigated as carriers for the delivery of curcumin, a model liposoluble compound. Nanocellulose modification with the surfactant cetyltrimethylammonium bromide (CTAB), tannic acid and decylamine (TADA), and by TEMPO-mediated oxidation were also tested and compared. The carrier materials were characterized in terms of structural properties and surface charge, while the delivery systems were evaluated for their encapsulation and release properties. The release profile was assessed in conditions that mimic the gastric and intestinal fluids, and cytotoxicity studies were performed in intestinal cells to confirm safe application. Modification with CTAB and TADA resulted in high curcumin encapsulation efficiencies of 90 and 99%, respectively. While no curcumin was released from TADA-modified nanocellulose in simulated gastrointestinal conditions, CNC-CTAB allowed for a curcumin-sustained release of ca. 50% over 8 h. Furthermore, the CNC-CTAB delivery system showed no cytotoxic effects on Caco-2 intestinal cells up to 0.125 g/L, meaning that up to this concentration the system is safe to use. Overall, the use of the delivery systems allowed for the reduction in the cytotoxicity associated with higher curcumin concentrations, highlighting the potential of nanocellulose encapsulation systems.info:eu-repo/semantics/publishedVersio
    • …
    corecore