45,678 research outputs found

    Semiclassics around a phase space caustic: an illustration using the Nelson Hamiltonian

    Full text link
    The semiclassical formula for the coherent-state propagator is written in terms of complex classical trajectories of an equivalent classical system. Depending on the parameters involved, more than one trajectory may contribute to the calculation. Eventually, however, two contributing trajectories coalesce, characterizing what is called phase space caustic. In this case, the usual semiclassical formula for the propagator diverges, so that a uniform approximation is required to avoid this singularity. In this paper, we present a non-trivial application illustrating this scenario, and showing the accuracy of the uniform formula that we have previously derived.Comment: 6 pages, 2 figure

    Accelerated adiabatic quantum gates: optimizing speed versus robustness

    No full text
    We develop new protocols for high-fidelity single qubit gates that exploit and extend theoretical ideas for accelerated adiabatic evolution. Our protocols are compatible with qubit architectures with highly isolated logical states, where traditional approaches are problematic; a prime example are superconducting fluxonium qubits. By using an accelerated adiabatic protocol we can enforce the desired adiabatic evolution while having gate times that are comparable to the inverse adiabatic energy gap (a scale that is ultimately set by the amount of power used in the control pulses). By modelling the effects of decoherence, we explore the tradeoff between speed and robustness that is inherent to shortcuts-to-adiabaticity approaches

    The Electronic States of Two Oppositely doped Mott Insulators Bilayers

    Full text link
    We study the effect of Coulomb interaction between two oppositely doped low-dimensional tJ model systems. We exactly show that, in the one-dimensional case, an arbitrarily weak interaction leads to the formation of charge neutral electron-hole pairs. We then use two different mean-field theories to address the two-dimensional case, where inter-layer excitons also form and condense. We propose that this results in new features which have no analog in single layers, such as the emergence of an insulating spin liquid phase. Our simple bilayer model might have relevance to the physics of doped Mott insulator interfaces and of the new four layer Ba2CaCu4O8 compound.Comment: 4 pages, 1 figur

    Nova Eruptions with Infrared Interferometric Observations

    Get PDF
    Infrared interferometric observations have a great deal of potential to unravel the nature of the nova eruptions. We suggest that techniques, already in place, to derive the ejection details at optical wavelengths be used with infrared interferometric observations to derive parameters such as the ejected mass in a nova eruption. This is achievable based on modelling the initial phase of the eruption when the infrared light is dominated by the free-free thermal process.Comment: To appear in the proceedings of "Physics of Evolved Stars 2015 - A conference dedicated to the memory of Olivier Chesneau

    ATP as a presynaptic modulator

    Get PDF
    © 2000 Elsevier Science Inc.There is considerable evidence that ATP acts as a fast transmitter or co-transmitter in autonomic and sensory nerves mostly through activation of ionotropic P2X receptors but also through metabotropic P2Y receptors. By analogy, the observations that ATP is released from stimulated central nervous system (CNS) nerve terminals and that responses to exogenously added ATP can be recorded in central neurons, lead to the proposal that ATP might also be a fast transmitter in the CNS. However, in spite of the robust expression of P2 receptor mRNA and binding to P2 receptors in the CNS, the demonstration of central purinergic transmission has mostly remained elusive. We now review evidence to suggest that ATP may also act presynaptically rather than solely postsynaptically in the nervous system.Fundação Ciência e Tecnologia and European nio
    corecore