8 research outputs found
Effect of Molecular Organization on the Properties of Fractionated Lignin-Based ThiolâEne Thermoset Materials
In this study, the combination of sequential solvent fractionation of technical Kraft lignin was followed by allylation of most OH functionalities to give highly functional thermoset resins. All lignin fractions were highly functionalized on the phenolic (â„95%) and carboxylic acid OH (â„85%) and to a significant extent on the aliphatic OH moieties (between 43 and 75%). The resins were subsequently cross-linked using thiolâene chemistry. The high amount of allyl functionalities resulted in a high cross-link density. Dynamic mechanical analysis measurements showed that the thioether content, directly related to the allyl content, strongly affects the performance of these thermosets with a glass transition temperature () between 81 and 95 °C and with a storage modulus between 1.9 and 3.8 GPa for all thermosets. The lignin fractions and lignin-based thermosetsâ morphology, at the nanoscale, was studied by wide-angle X-ray scattering measurements. Two ÏâÏ stacking interactions were observed: sandwich (â4.1â4.7 Ă
) and T-shaped (â5.5â7.2 Ă
). The introduction of allyl functionalities weakens the T-shaped ÏâÏ stacking interactions. A new signal corresponding to a distance of â3.5 Ă
was observed in lignin-based thermosets, which was attributed to a thioether organized structure. At the same time, a lignin superstructure was observed with a distance/size corresponding to 7.9â17.5 Ă
in all samples
Impact of lignin source on the performance of thermoset resins
A series of different technical hardwood lignin-based resins have been successfully synthesized, characterized, and utilised to produce thiol-ene thermoset polymers. Firstly, technical lignin was fractionated and allylated, whereafter it was crosslinked with a trifunctional thiol. Structural and morphological characteristics of the lignin fractions were studied by H NMR, P NMR, SEC, FTIR, DSC, TGA, and WAXS. The hardwood lignin fractions have a high content of C5-substituted OH groups. The WAXS studies on lignin fractions revealed the presence of two Ï-Ï stacking conformations, sandwiched (4.08â4.25 Ă
) and T-shaped (6.52â6.91 Ă
). The presence of lignin superstructures with distances/sizes between 10.5 and 12.8 Ă
was also identified. The curing reaction of the thermosets was investigated by RT-FTIR. Almost all thermosets (excepting one fraction) reached 95% of the thiol conversion in less than 17 h, revealing the enhanced reactivity of the allylated hardwood lignin samples.
The mechanical properties of the thermosets were investigated by DMA. The curing performance, as well as the final thermoset properties, have been correlated to variations in chemical composition and morphological differences of lignin fractions. The described results clearly demonstrate that technical hardwood lignins can be utilized for these applications, but also that significant differences compared to softwood lignins have to be considered for material design
Lignin-Based Thermosets with Tunable Mechanical and Morphological Properties : A Study of Structure-Property Relationships
Nowadays, there is an urgent need to decrease our dependence on fossilresources and shift towards the use of renewable resources for advancingsustainable development. Utilizing renewable and bio-based raw materials,such as lignocellulosic biomass, for designing new materials is a promisingapproach to promote this objective. The main components of lignocellulosicbiomass are cellulose, hemicellulose, and lignin. Lignin is the most abundantaromatic biopolymer in nature and it is produced on a large scale fromchemical pulping processes as technical lignin. Lignin has the potential as asustainable and renewable alternative to fossil-based aromatics in variousapplications, e.g. thermosetting resins. Technical lignin has a complex and heterogeneous structure, with arelatively low chemical reactivity. It is characterized by a high dispersity, thepresence of various functional groups that are unevenly distributed along thelignin chains, and various interunit linkages between the monoaromatics. Toovercome the challenges associated with lignin heterogeneity, technicallignin can be fractionated and/or chemically modified. In this work, LignoBoost Kraft lignin was used as a starting material toproduce lignin-based thiol-ene thermosets. Firstly, lignin was fractionatedusing two approaches: 1) sequential solvent fractionation, and 2) microwaveassistedextraction. These fractionation approaches enabled access to ligninfractions with unique and tunable properties. Subsequently, lignin waschemically modified, in particular through allylation. Two allylation reagentswere used: allyl chloride and diallyl carbonate. The use of allyl chlorideenables a selective allylation of the phenolic OH groups, leaving the aliphaticand carboxylic acid OH groups unmodified. On the other hand, diallylcarbonate can react with all the aforementioned OH groups, leading to ahigher degree of allylation. Subsequently, allylated lignin was thermallycross-linked with various polyfunctional thiols, leading to thiol-enethermosets. The structure-property relationships of the thermosets wereinvestigated by varying several parameters, including the lignin source,fractionation approach, chemical modification, and thiol cross-linker. Byadjusting these parameters, various thermosets with tunable mechanical andmorphological properties were produced. Understanding the structurepropertyrelationships of these bio-based materials is crucial for identifyingpotential applications.Nuförtiden finns det ett akut behov av att minska vÄrt beroende av fossilaresurser och övergÄ till anvÀndningen av förnybara resurser och dÀrmedavancera den hÄllbara utvecklingen. Att anvÀnda förnybara och biobaseraderÄvaror, sÄsom lignocellulosabiomassa, för att designa nya material Àr ettlovande tillvÀgagÄngssÀtt för att uppnÄ detta mÄl. Huvudkomponenterna ilignocellulosabiomassa Àr cellulosa, hemicellulosa och lignin. Lignin Àrnaturens vanligaste aromatiska biopolymer och den produceras i stor skalafrÄn kemiska massaprocesser som tekniskt lignin. Lignin kan fungera som etthÄllbart och förnybart alternativ till fossilbaserade aromater i olikatillÀmpningar, t.ex. g. vÀrmehÀrdande hartser. Tekniskt lignin har en komplex och heterogen struktur, med en relativt lÄgkemisk reaktivitet. Det kÀnnetecknas av en hög dispersitet, nÀrvaron av olikafunktionella grupper som Àr ojÀmnt fördelade lÀngs ligninkedjorna, och olikatyper av enhetsbindningar mellan monoaromaterna. För att övervinna deutmaningar som Àr förknippade med ligninets heterogenitet kan ligninfraktioneras och/eller kemiskt modifieras. I detta arbete anvÀndes LignoBoost Kraft-lignin som utgÄngsmaterial föratt tillverka ligninbaserade tiol-en-hÀrdplaster. Först har lignin fraktioneratsmed hjÀlp av tvÄ olika metoder: 1) sekventiell lösningsmedelsfraktionering,och 2) mikrovÄgsassisterad extraktion. Dessa fraktioneringsmetoder gjordedet möjligt att erhÄlla ligninfraktioner med unika och skrÀddarsyddaegenskaper. DÀrefter modifierades ligninet kemiskt genom allylering. TvÄallyleringsreagens anvÀndes: allylklorid och diallylkarbonat. AnvÀndningenav allylklorid möjliggör selektiv allylering av de fenoliska OH-grupperna,samtidigt som de alifatiska och karboxylsyra-OH-grupperna lÀmnasomodifierade. Diallylkarbonat kan Ä andra sidan reagera med alla de tidigarenÀmnda OH-grupperna, vilket leder till en högre grad av allylering. DÀreftertvÀrbands hÀrdades allylerat lignin termiskt med olika polyfunktionellatioler, för att ge hÀrdplast med tiol-en-tvÀrbindingar. StrukturegenskapsförhÄllandenaför hÀrdplasterna undersöktes genom att varieraflera parametrar, inklusive ligninkÀllan, fraktioneringsmetod, kemiskmodifiering och tioltvÀrbindare. Genom att justera dessa parametrarproducerades olika hÀrdplaster med skrÀddarsydda mekaniska ochmorfologiska egenskaper. Att förstÄ relationerna mellan struktur ochegenskaper av dessa biobaserade material Àr avgörande för att identifierapotentiella tillÀmpningar.QC 2023-05-23</p
Lignin-Based Thermosets with Tunable Mechanical and Morphological Properties : A Study of Structure-Property Relationships
Nowadays, there is an urgent need to decrease our dependence on fossilresources and shift towards the use of renewable resources for advancingsustainable development. Utilizing renewable and bio-based raw materials,such as lignocellulosic biomass, for designing new materials is a promisingapproach to promote this objective. The main components of lignocellulosicbiomass are cellulose, hemicellulose, and lignin. Lignin is the most abundantaromatic biopolymer in nature and it is produced on a large scale fromchemical pulping processes as technical lignin. Lignin has the potential as asustainable and renewable alternative to fossil-based aromatics in variousapplications, e.g. thermosetting resins. Technical lignin has a complex and heterogeneous structure, with arelatively low chemical reactivity. It is characterized by a high dispersity, thepresence of various functional groups that are unevenly distributed along thelignin chains, and various interunit linkages between the monoaromatics. Toovercome the challenges associated with lignin heterogeneity, technicallignin can be fractionated and/or chemically modified. In this work, LignoBoost Kraft lignin was used as a starting material toproduce lignin-based thiol-ene thermosets. Firstly, lignin was fractionatedusing two approaches: 1) sequential solvent fractionation, and 2) microwaveassistedextraction. These fractionation approaches enabled access to ligninfractions with unique and tunable properties. Subsequently, lignin waschemically modified, in particular through allylation. Two allylation reagentswere used: allyl chloride and diallyl carbonate. The use of allyl chlorideenables a selective allylation of the phenolic OH groups, leaving the aliphaticand carboxylic acid OH groups unmodified. On the other hand, diallylcarbonate can react with all the aforementioned OH groups, leading to ahigher degree of allylation. Subsequently, allylated lignin was thermallycross-linked with various polyfunctional thiols, leading to thiol-enethermosets. The structure-property relationships of the thermosets wereinvestigated by varying several parameters, including the lignin source,fractionation approach, chemical modification, and thiol cross-linker. Byadjusting these parameters, various thermosets with tunable mechanical andmorphological properties were produced. Understanding the structurepropertyrelationships of these bio-based materials is crucial for identifyingpotential applications.Nuförtiden finns det ett akut behov av att minska vÄrt beroende av fossilaresurser och övergÄ till anvÀndningen av förnybara resurser och dÀrmedavancera den hÄllbara utvecklingen. Att anvÀnda förnybara och biobaseraderÄvaror, sÄsom lignocellulosabiomassa, för att designa nya material Àr ettlovande tillvÀgagÄngssÀtt för att uppnÄ detta mÄl. Huvudkomponenterna ilignocellulosabiomassa Àr cellulosa, hemicellulosa och lignin. Lignin Àrnaturens vanligaste aromatiska biopolymer och den produceras i stor skalafrÄn kemiska massaprocesser som tekniskt lignin. Lignin kan fungera som etthÄllbart och förnybart alternativ till fossilbaserade aromater i olikatillÀmpningar, t.ex. g. vÀrmehÀrdande hartser. Tekniskt lignin har en komplex och heterogen struktur, med en relativt lÄgkemisk reaktivitet. Det kÀnnetecknas av en hög dispersitet, nÀrvaron av olikafunktionella grupper som Àr ojÀmnt fördelade lÀngs ligninkedjorna, och olikatyper av enhetsbindningar mellan monoaromaterna. För att övervinna deutmaningar som Àr förknippade med ligninets heterogenitet kan ligninfraktioneras och/eller kemiskt modifieras. I detta arbete anvÀndes LignoBoost Kraft-lignin som utgÄngsmaterial föratt tillverka ligninbaserade tiol-en-hÀrdplaster. Först har lignin fraktioneratsmed hjÀlp av tvÄ olika metoder: 1) sekventiell lösningsmedelsfraktionering,och 2) mikrovÄgsassisterad extraktion. Dessa fraktioneringsmetoder gjordedet möjligt att erhÄlla ligninfraktioner med unika och skrÀddarsyddaegenskaper. DÀrefter modifierades ligninet kemiskt genom allylering. TvÄallyleringsreagens anvÀndes: allylklorid och diallylkarbonat. AnvÀndningenav allylklorid möjliggör selektiv allylering av de fenoliska OH-grupperna,samtidigt som de alifatiska och karboxylsyra-OH-grupperna lÀmnasomodifierade. Diallylkarbonat kan Ä andra sidan reagera med alla de tidigarenÀmnda OH-grupperna, vilket leder till en högre grad av allylering. DÀreftertvÀrbands hÀrdades allylerat lignin termiskt med olika polyfunktionellatioler, för att ge hÀrdplast med tiol-en-tvÀrbindingar. StrukturegenskapsförhÄllandenaför hÀrdplasterna undersöktes genom att varieraflera parametrar, inklusive ligninkÀllan, fraktioneringsmetod, kemiskmodifiering och tioltvÀrbindare. Genom att justera dessa parametrarproducerades olika hÀrdplaster med skrÀddarsydda mekaniska ochmorfologiska egenskaper. Att förstÄ relationerna mellan struktur ochegenskaper av dessa biobaserade material Àr avgörande för att identifierapotentiella tillÀmpningar.QC 2023-05-23</p
Exploring the Effects of Different Cross-Linkers on Lignin-Based Thermoset Properties and Morphologies
The search for sustainable material solutions has put lignin as one of the prime candidates for aromatic building blocks in macromolecular materials. The present study aimed to demonstrate how lignin-based thermoset resins can be utilized in combination with different cross-linkers. Kraft lignin was used to produce thermosets with tunable mechanical and morphological properties. The lignin-based thermosets were obtained via a thermally induced thiolâene reaction. The first part of this work was focused on Kraft lignin solvent fractionation and chemical modification of the ethanol soluble fraction. Chemical analysis indicated that the allylation process was selective toward phenolic hydroxyl groups. SAXS and SEM studies demonstrated that solvent fractionation and allylation processes affected the molecular and nanoscale morphological characteristics of lignin. The second partâs focus was on how the properties of thermosets can be tuned by using three different cross-linkers. The dynamic mechanical and morphological properties of three different thermosets were investigated via DMA, SAXS, and WAXS techniques. The three different thermosets exhibit similar molecular morphology but different storage modulus and glass transition temperature. In this work, it was shown that despite ligninâs heterogeneity it was possible to produce thermosetting materials with tunable properties.QC 20210217</p
Exploring the Effects of Different Cross-Linkers on Lignin-Based Thermoset Properties and Morphologies
The search for sustainable material solutions has put lignin as one of the prime candidates for aromatic building blocks in macromolecular materials. The present study aimed to demonstrate how lignin-based thermoset resins can be utilized in combination with different cross-linkers. Kraft lignin was used to produce thermosets with tunable mechanical and morphological properties. The lignin-based thermosets were obtained via a thermally induced thiolâene reaction. The first part of this work was focused on Kraft lignin solvent fractionation and chemical modification of the ethanol soluble fraction. Chemical analysis indicated that the allylation process was selective toward phenolic hydroxyl groups. SAXS and SEM studies demonstrated that solvent fractionation and allylation processes affected the molecular and nanoscale morphological characteristics of lignin. The second partâs focus was on how the properties of thermosets can be tuned by using three different cross-linkers. The dynamic mechanical and morphological properties of three different thermosets were investigated via DMA, SAXS, and WAXS techniques. The three different thermosets exhibit similar molecular morphology but different storage modulus and glass transition temperature. In this work, it was shown that despite ligninâs heterogeneity it was possible to produce thermosetting materials with tunable properties
Exploring the Effects of Different Cross-Linkers on Lignin-Based Thermoset Properties and Morphologies
The search for sustainable material solutions has put lignin as one of the prime candidates for aromatic building blocks in macromolecular materials. The present study aimed to demonstrate how lignin-based thermoset resins can be utilized in combination with different cross-linkers. Kraft lignin was used to produce thermosets with tunable mechanical and morphological properties. The lignin-based thermosets were obtained via a thermally induced thiolâene reaction. The first part of this work was focused on Kraft lignin solvent fractionation and chemical modification of the ethanol soluble fraction. Chemical analysis indicated that the allylation process was selective toward phenolic hydroxyl groups. SAXS and SEM studies demonstrated that solvent fractionation and allylation processes affected the molecular and nanoscale morphological characteristics of lignin. The second partâs focus was on how the properties of thermosets can be tuned by using three different cross-linkers. The dynamic mechanical and morphological properties of three different thermosets were investigated via DMA, SAXS, and WAXS techniques. The three different thermosets exhibit similar molecular morphology but different storage modulus and glass transition temperature. In this work, it was shown that despite ligninâs heterogeneity it was possible to produce thermosetting materials with tunable properties
Industrial Kraft Lignin Based Binary Cathode Interface Layer Enables Enhanced Stability in High Efficiency Organic Solar Cells
Herein, a binary cathode interface layer (CIL) strategy based on the industrial solvent fractionated LignoBoost kraft lignin (KL) is adopted for fabrication of organic solar cells (OSCs). The uniformly distributed phenol moieties in KL enable it to easily form hydrogen bonds with commonly used CIL materials, i.e., bathocuproine (BCP) and PFN-Br, resulting in binary CILs with tunable work function (WF). This work shows that the binary CILs work well in OSCs with large KL ratio compatibility, exhibiting equivalent or even higher efficiency to the traditional CILs in state of art OSCs. In addition, the combination of KL and BCP significantly enhanced OSC stability, owing to KL blocking the reaction between BCP and nonfullerene acceptors (NFAs). This work provides a simple and effective way to achieve high-efficient OSCs with better stability and sustainability by using wood-based materials. This work introduces industrial solvent fractionated LignoBoost kraft lignin (KL) in highly efficient organic solar cells (OSCs) by binary cathode interface layer (CIL) strategy, which can significantly improve the stability of both binary and ternary photoactive layer (PAL) OSC, owing to the passivation of diffusion and reaction between bathocuproine (BCP) and nonfullerene acceptors (NFAs). The results combine sustainable wood-based material with classic interface materials in advance NFA-OSCs.imageFunding Agencies|Stiftelsen fr Miljstrategisk Forskning; Knut and Alice Wallenberg Foundation (KAW) through the Wallenberg Wood Science Center; Swedish Energy Agency; Swedish Research Council; STINT grant; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009 00971]; [45411-1]; [2016-05498]; [2016-05990]; [2020-04538]; [2018-06048]; [CH2017-7163]</p