37 research outputs found

    Comparative in vitro activity of Meropenem, Imipenem and Piperacillin/tazobactam against 1071 clinical isolates using 2 different methods: a French multicentre study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meropenem is a carbapenem that has an excellent activity against many gram-positive and gram-negative aerobic, facultative, and anaerobic bacteria. The major objective of the present study was to assess the <it>in vitro </it>activity of meropenem compared to imipenem and piperacillin/tazobactam, against 1071 non-repetitive isolates collected from patients with bacteremia (55%), pneumonia (29%), peritonitis (12%) and wound infections (3%), in 15 French hospitals in 2006. The secondary aim of the study was to compare the results of routinely testings and those obtained by a referent laboratory.</p> <p>Method</p> <p>Susceptibility testing and Minimum Inhibitory Concentrations (MICs) of meropenem, imipenem and piperacillin/tazobactam were determined locally by Etest method. Susceptibility to meropenem was confirmed at a central laboratory by disc diffusion method and MICs determined by agar dilution method for meropenem, imipenem and piperacillin/tazobactam.</p> <p>Results</p> <p>Cumulative susceptibility rates against <it>Escherichia coli </it>were, meropenem and imipenem: 100% and piperacillin/tazobactam: 90%. Against other <it>Enterobacteriaceae</it>, the rates were meropenem: 99%, imipenem: 98% and piperacillin/tazobactam: 90%. All <it>Staphylococci</it>, <it>Streptococci </it>and anaerobes were susceptible to the three antibiotics. Against non fermeters, meropenem was active on 84-94% of the strains, imipenem on 84-98% of the strains and piperacillin/tazobactam on 90-100% of the strains.</p> <p>Conclusions</p> <p>Compared to imipenem, meropenem displays lower MICs against <it>Enterobacteriaceae</it>, <it>Escherichia coli </it>and <it>Pseudomonas aeruginosa</it>. Except for non fermenters, MICs90 of carbapenems were <4 mg/L. Piperacillin/tazobactam was less active against <it>Enterobacteriaceae </it>and <it>Acinetobacter </it>but not <it>P. aeruginosa</it>. Some discrepancies were noted between MICs determined by Etest accross centres and MICs determined by agar dilution method at the central laboratory. Discrepancies were more common for imipenem testing and more frequently related to a few centres. Overall MICs determined by Etest were in general higher (0.5 log to 1 log fold) than MICs by agar dilution.</p

    Characterization and genomic analyses of two newly isolated Morganella phages define distant members among Tevenvirinae and Autographivirinae subfamilies

    Get PDF
    Morganella morganii is a common but frequent neglected environmental opportunistic pathogen which can cause deadly nosocomial infections. The increased number of multidrug-resistant M. morganii isolates motivates the search for alternative and effective antibacterials. We have isolated two novel obligatorily lytic M. morganii bacteriophages (vB_MmoM_MP1, vB_MmoP_MP2) and characterized them with respect to specificity, morphology, genome organization and phylogenetic relationships. MP1s dsDNA genome consists of 163,095bp and encodes 271 proteins, exhibiting low DNA (10kb chromosomal inversion that encompass the baseplate assembly and head outer capsid synthesis genes when compared to other T-even bacteriophages. MP2 has a dsDNA molecule with 39,394bp and encodes 55 proteins, presenting significant genomic (70%) and proteomic identity (86%) but only to Morganella bacteriophage MmP1. MP1 and MP2 are then novel members of Tevenvirinae and Autographivirinae, respectively, but differ significantly from other tailed bacteriophages of these subfamilies to warrant proposing new genera. Both bacteriophages together could propagate in 23 of 27M. morganii clinical isolates of different origin and antibiotic resistance profiles, making them suitable for further studies on a development of bacteriophage cocktail for potential therapeutic applications.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the Project PTDC/BBB-BSS/6471/2014 (POCI-01-0145-FEDER-016678). RL contributed to the genome sequencing analysis, supported by the KU Leuven GOA Grant ‘Phage Biosystems’. JP acknowledges the project R-3986 of the Herculesstichting.info:eu-repo/semantics/publishedVersio

    Identification of a Bacteria-produced Benzisoxazole with Antibiotic Activity against Multi-drug Resistant Acinetobacter baumannii

    Get PDF
    The emergence of multi-drug resistant pathogenic bacteria represents a serious and growing threat to national healthcare systems. Most pressing is an immediate need for the development of novel antibacterial agents to treat Gram-negative multi-drug resistant infections, including the opportunistic, hospital-derived pathogen, Acinetobacter baumannii. Herein we report a naturally occurring 1,2-benzisoxazole with minimum inhibitory concentrations as low as 6.25 μg ml−1 against clinical strains of multi-drug resistant A. baumannii and investigate its possible mechanisms of action. This molecule represents a new chemotype for antibacterial agents against A. baumannii and is easily accessed in two steps via de novo synthesis. In vitro testing of structural analogs suggest that the natural compound may already be optimized for activity against this pathogen. Our results demonstrate that supplementation of 4-hydroxybenzoate in minimal media was able to reverse 1,2-benzisoxazole’s antibacterial effects in A. baumannii. A search of metabolic pathways involving 4-hydroxybenzoate coupled with molecular modeling studies implicates two enzymes, chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyltransferase, as promising leads for the target of 3,6-dihydroxy-1,2-benzisoxazole

    Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella

    Get PDF
    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment

    Molecular characterization of the beta-lactamases from clinical isolates of Moraxella (Branhamella) catarrhalis obtained from 24 U.S. medical centers during 1994-1995 and 1997-1998.

    No full text
    The beta-lactamases from 403 Moraxella (Branhamella) catarrhalis clinical isolates obtained during 1994-1995 and 1997-1998 U.S. multicenter surveillance studies were characterized by isoelectric focusing. The overall prevalences of the BRO-1 and BRO-2 enzymes among beta-lactamase-positive isolates were estimated to be 97.5 and 2.5%, respectively. The minimum inhibitory concentrations (MICs) of ampicillin for all BRO-2-producing isolates wer

    A 1997-1998 national surveillance study: Moraxella catarrhalis and Haemophilus influenzae antimicrobial resistance in 34 US institutions.

    No full text
    From November 1, 1997 to April 30, 1998, 726 Moraxella catarrhalis isolates and 1529 Haemophilus influenzae isolates were obtained from 34 medical centres throughout the United States. Rates of beta-lactamase production were 94.6% among M. catarrhalis and 31.1% among H. influenzae strains. Susceptibility rates of M. catarrhalis isolates to selected antimicrobial agents were greater than 99% for amoxycillin-clavulanate, cefixime, cefpodoxime, cefuroxime, cefaclor, loracarbef, clarithromycin, azithromycin, chloramphenicol and tetracycline, 97.8% for cefprozil, 50.4% for trimethoprim-sulphamethoxazole and 28.1% for ampicillin. Of the antimicrobials tested against H. influenzae, the only agents with susceptibility rates below 96% were loracarbef (87.6%), cefprozil (83.4%), cefaclor (82.7%), trimethoprim-sulphamethoxazole (67.3%) and ampicillin (64.7%). The clarithromycin susceptibility rate was 67.4% but this agent was not tested in the presence of its 14-OH metabolite

    Change of antibiotic susceptibility testing guidelines from CLSI to EUCAST: Influence on cumulative hospital antibiograms

    Get PDF
    OBJECTIVE: We studied whether the change in antibiotic susceptibility testing (AST) guidelines from CLSI to EUCAST influenced cumulative antibiograms in a tertiary care hospital in Switzerland. METHODS: Antibiotic susceptibilities of non-duplicate isolates collected within a one-year period before (period A) and after (period B) changing AST interpretation from CLSI 2009 to EUCAST 1.3 (2011) guidelines were analysed. In addition, period B isolates were reinterpreted according to the CLSI 2009, CLSI 2013 and EUCAST 3.1 (2013) guidelines. RESULTS: The majority of species/drug combinations showed no differences in susceptibility rates comparing periods A and B. However, in some gram-negative bacilli, decreased susceptibility rates were observed when comparing CLSI 2009 with EUCAST 1.3 within period B: Escherichia coli / cefepime, 95.8% (CLSI 2009) vs. 93.1% (EUCAST 1.3), P=0.005; Enterobacter cloacae / cefepime, 97.0 (CLSI 2009) vs. 90.5% (EUCAST 1.3), P=0.012; Pseudomonas aeruginosa / meropenem, 88.1% (CLSI 2009) vs. 78.3% (EUCAST 1.3), P=0.002. These differences were still evident when comparing susceptibility rates according to the CLSI 2013 guideline with EUCAST 3.1 guideline. For P. aeruginosa and imipenem, a trend towards a lower antibiotic susceptibility rate in ICUs compared to general wards turned into a significant difference after the change to EUCAST: 87.9% vs. 79.8%, P=0.08 (CLSI 2009) and 86.3% vs. 76.8%, P=0.048 (EUCAST 1.3). CONCLUSIONS: The change of AST guidelines from CLSI to EUCAST led to a clinically relevant decrease of susceptibility rates in cumulative antibiograms for defined species/drug combinations, particularly in those with considerable differences in clinical susceptibility breakpoints between the two guidelines
    corecore