415 research outputs found
Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.
BackgroundGeneral translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood.ResultsHere, we show that these sequence features specify 42-81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25-60 nucleotide segments within mRNA 5' regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5' regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.ConclusionsOur work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell
Análise integrada de sistemas de produção de tomateiro com base em indicadores edafobiológicos.
A análise integrada de indicadores edafobiológicos ligados ao manejo do solo constitui uma ferramenta importante para estimar níveis de sustentabilidade do agroecossistema, detectando-se pontos críticos para a devida correção de manejo. Essa ferramenta foi empregada na avaliação de sistemas de produção orgânica e convencional de tomate, em cultivo protegido e a campo aberto, no estado de São Paulo. Tomaram-se como referência solos de mata nativa e/ou pastagem natural, dependendo do local de estudo. Em Serra Negra, o solo sob sistema orgânico apresentou maior capacidade de campo e teor de argila dispersa mais baixo, indicativos da estabilidade dos agregados. No sistema convencional observou-se uma elevada condutividade elétrica, evidenciando a alta disponibilidade de sais solúveis. A análise de componentes principais (ACP) permitiu concluir que há maior grau de similaridade entre o solo sob sistema orgânico e aqueles das bases referenciais, com respeito aos indicadores químicos e biológicos. Constatou-se que C org, N total, polissacarídeos, FDA (hidrólise de diacetato de fluoresceína) e atividade enzimática de desidrogenase estão positivamente relacionados com o sistema orgânico, a mata nativa e a pastagem. Em contrapartida, a saturação por bases (V%), pH, teores de Mn, Mg e Ca, bem como a razão de dispersão estão inversamente relacionadas ao manejo orgânico. Já em Araraquara, os resultados da ACP distinguiram as áreas organicamente cultivadas das matas nativas, principalmente, com base nos indicadores biológicos
How Accessible Was Information about H1N1 Flu? Literacy Assessments of CDC Guidance Documents for Different Audiences
We assessed the literacy level and readability of online communications about H1N1/09 influenza issued by the Centers for Disease Control and Prevention (CDC) during the first month of outbreak. Documents were classified as targeting one of six audiences ranging in technical expertise. Flesch-Kincaid (FK) measure assessed literacy level for each group of documents. ANOVA models tested for differences in FK scores across target audiences and over time. Readability was assessed for documents targeting non-technical audiences using the Suitability Assessment of Materials (SAM). Overall, there was a main-effect by audience, F(5, 82) = 29.72, P<.001, but FK scores did not vary over time, F(2, 82) = .34, P>.05. A time-by-audience interaction was significant, F(10, 82) = 2.11, P<.05. Documents targeting non-technical audiences were found to be text-heavy and densely-formatted. The vocabulary and writing style were found to adequately reflect audience needs. The reading level of CDC guidance documents about H1N1/09 influenza varied appropriately according to the intended audience; sub-optimal formatting and layout may have rendered some text difficult to comprehend
High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes
In plants, microRNAs (miRNAs) comprise one of two classes of small RNAs that function primarily as negative regulators at the posttranscriptional level. Several MIRNA genes in the plant kingdom are ancient, with conservation extending between angiosperms and the mosses, whereas many others are more recently evolved. Here, we use deep sequencing and computational methods to identify, profile and analyze non-conserved MIRNA genes in Arabidopsis thaliana. 48 non-conserved MIRNA families, nearly all of which were represented by single genes, were identified. Sequence similarity analyses of miRNA precursor foldback arms revealed evidence for recent evolutionary origin of 16 MIRNA loci through inverted duplication events from protein-coding gene sequences. Interestingly, these recently evolved MIRNA genes have taken distinct paths. Whereas some non-conserved miRNAs interact with and regulate target transcripts from gene families that donated parental sequences, others have drifted to the point of non-interaction with parental gene family transcripts. Some young MIRNA loci clearly originated from one gene family but form miRNAs that target transcripts in another family. We suggest that MIRNA genes are undergoing relatively frequent birth and death, with only a subset being stabilized by integration into regulatory networks
Characterization of Unique Small RNA Populations from Rice Grain
Small RNAs (∼20 to 24 nucleotides) function as naturally occurring molecules critical in developmental pathways in plants and animals [1], [2]. Here we analyze small RNA populations from mature rice grain and seedlings by pyrosequencing. Using a clustering algorithm to locate regions producing small RNAs, we classified hotspots of small RNA generation within the genome. Hotspots here are defined as 1 kb regions within which small RNAs are significantly overproduced relative to the rest of the genome. Hotspots were identified to facilitate characterization of different categories of small RNA regulatory elements. Included in the hotspots, we found known members of 23 miRNA families representing 92 genes, one trans acting siRNA (ta-siRNA) gene, novel siRNA-generating coding genes and phased siRNA generating genes. Interestingly, over 20% of the small RNA population in grain came from a single foldback structure, which generated eight phased 21-nt siRNAs. This is reminiscent of a newly arising miRNA derived from duplication of progenitor genes [3], [4]. Our results provide data identifying distinct populations of small RNAs, including phased small RNAs, in mature grain to facilitate characterization of small regulatory RNA expression in monocot species
Quality of interaction between primary health-care providers and patients with type 2 diabetes in Muscat, Oman: an observational study
BACKGROUND: A good patient-physician interaction is particularly important in chronic diseases like diabetes. There are so far no published data regarding the interaction between the primary health-care providers and patients with type 2 diabetes in Oman, where diabetes is a major and growing health problem. This study aimed at exploring how health-care providers interact with patients with type 2 diabetes at primary health-care level in Muscat, Oman, focusing on the consultation environment, and some aspects of care and information. METHODS: Direct observations of 90 consultations between 23 doctors and 13 diabetes nurses concerned with diabetes management during their consultations with type 2 diabetes patients in six primary health-care centres in the Muscat region, using checklists developed from the National Diabetes Guidelines. Consultations were assessed as optimal if more than 75% of observed aspects were fulfilled and sub-optimal if less than 50% were fulfilled. RESULTS: Overall 52% of the doctors' consultations were not optimal. Some important aspects for a positive consultation environment were fulfilled in only about half of the doctors' consultations: ensuring privacy of consultation (49%), eye contact (49%), good attention (52%), encouraging asking questions (47%), and emphasizing on the patients' understanding of the provided information (52%). The doctors enquired about adverse effects of anti-diabetes drugs in less than 10% of consultations. The quality of the nurses' consultations was sub-optimal in about 75% of 85 consultations regarding aspects of consultation environment, care and information. CONCLUSION: The performance of the primary health-care doctors and diabetes nurses needs to be improved. The role of the diabetes nurses and the teamwork should be enhanced. We suggest a multidisciplinary team approach, training and education to the providers to upgrade their skills regarding communication and care. Barriers to compliance with the guidelines need to be further explored. Improving the work situation mainly for the diabetes nurses and further improvement in the organizational efficiency of diabetes services such as lowering the number of patients in diabetes clinic, are suggested
Phytostabilization of metals in mine soils using Brassica juncea in combination with organic amendments
Background and aims The high metal bioavailability and the poor conditions of mine soils yield a low plant biomass, limiting the application of phytoremediation techniques. A greenhouse experiment was performed to evaluate the effects of organic amendments on metal stabilization and the potential of Brassica juncea L. for phytostabilization in mine soils. Methods Plants were grown in pots filled with soils collected from two mine sites located in Central Spain mixed with 0, 30 and 60 tha?1 of pine bark compost and horse- and sheep-manure compost. Plant biomass and metal concentrations in roots and shoots were measured. Metal bioavailability was assessed using a rhizosphere-based method (rhizo), which consists of a mixture of low-molecular-weight organic acids to simulate root exudates. Results Manure reduced metal concentrations in shoots (10?50 % reduction of Cu and 40?80 % of Zn in comparison with non-amended soils), bioconcentration factor (10?50 % of Cu and 40?80 % of Zn) and metal bioavailability in soil (40?50 % of Cu and 10?30 % of Zn) due to the high pH and the contribution of organic matter. Manure improved soil fertility and was also able to increase plant biomass (5?20 times in shoots and 3?30 times in roots), which resulted in a greater amount of metals removed from soil and accumulated in roots (increase of 2?7 times of Cu and Zn). Plants grown in pine bark treatments and in non-amended soils showed a limited biomass and high metal concentrations in shoots. Conclusions The addition of manure could be effective for the stabilization of metals and for enhancing the phytostabilization ability of B. juncea in mine soils. In this study, this species resulted to be a potential candidate for phytostabilization in combination with manure, differing from previous results, in which B. juncea had been recognized as a phytoextraction plant
Uptake and Accumulation of Oxidized Low-Density Lipoprotein during Mycobacterium tuberculosis Infection in Guinea Pigs
The typical host response to infection of humans and some animals by M. tuberculosis is the accumulation of reactive oxygen species generating inflammatory cells into discrete granulomas, which frequently develop central caseous necrosis. In previous studies we showed that infection of immunologically naïve guinea pigs with M. tuberculosis leads to localized and systemic oxidative stress that results in a significant depletion of serum total antioxidant capacity and the accumulation of malondialdehyde, a bi-product of lipid peroxidation. Here we show that in addition, the generation of excessive reactive oxygen species in vivo resulted in the accumulation of oxidized low density lipoproteins (OxLDL) in pulmonary and extrapulmonary granulomas, serum and lung macrophages collected by bronchoalveolar lavage. Macrophages from immunologically naïve guinea pigs infected with M. tuberculosis also had increased surface expression of the type 1 scavenger receptors CD36 and LOX1, which facilitate the uptake of oxidized host macromolecules including OxLDL. Vaccination of guinea pigs with Bacillus Calmette Guerin (BCG) prior to aerosol challenge reduced the bacterial burden as well as the intracellular accumulation of OxLDL and the expression of macrophage CD36 and LOX1. In vitro loading of guinea pig lung macrophages with OxLDL resulted in enhanced replication of bacilli compared to macrophages loaded with non-oxidized LDL. Overall, this study provides additional evidence of oxidative stress in M. tuberculosis infected guinea pigs and the potential role OxLDL laden macrophages have in supporting intracellular bacilli survival and persistence
- …