1,406 research outputs found

    The Gluon Spin in the Chiral Bag Model

    Get PDF
    We study the gluon polarization contribution at the quark model renormalization scale to the proton spin, Γ\Gamma, in the chiral bag model. It is evaluated by taking the expectation value of the forward matrix element of a local gluon operator in the axial gauge A+=0A^+=0. It is shown that the confining boundary condition for the color electric field plays an important role. When a solution satisfying the boundary condition for the color electric field, which is not the conventionally used but which we favor, is used, the Γ\Gamma has a positive value for {\it all} bag radii and its magnitude is comparable to the quark spin polarization. This results in a significant reduction in the relative fraction of the proton spin carried by the quark spin, which is consistent with the small flavor singlet axial current measured in the EMC experiments.Comment: Corrections to figure

    Cold Dense Baryonic Matter and Compact Stars

    Full text link
    Probing dense hadronic matter is thus far an uncharted field of physics. Here we give a brief summary of the highlights of what has been so far accomplished and what will be done in the years ahead by the World Class University III Project at Hanyang University in the endeavor to unravel and elucidate the multifacet of the cold dense baryonic matter existing in the interior of the densest visible stable object in the Universe, i.e., neutron stars, strangeness stars and/or quark stars, from a modest and simplified starting point of an effective field theory modeled on the premise of QCD as well as from a gravity dual approach of hQCD. The core of the matter of our research is the possible origin of the 99\sim 99% of the proton mass that is to be accounted for and how the "vacuum" can be tweaked so that the source of the mass generation can be uncovered by measurements made in terrestrial as well as space laboratories. Some of the issues treated in the program concern what can be done - both theoretically and experimentally - in anticipation of what's to come for basic physics research in Korea.Comment: 23 pages, 8 figures; Based on the review prepared for the "2011 World Class University (WCU) International Conference," August 2011, Seoul, Kore

    A Schematic Model for ρa1\rho-a_{1} Mixing at Finite Density and In-Medium Effective Lagrangian

    Get PDF
    Based on schematic two-level models extended to a1a_1-meson degrees of freedom, we investigate possible mechanisms of chiral restoration in the vector/axial-vector channels in cold nuclear matter. In the first part of this article we employ the massive Yang-Mills framework to construct an effective chiral Lagrangian based on low-energy mesonic modes at finite density. The latter are identified through nuclear collective excitations of `meson'-sobar type such as π[Δ(1232)N1]π^\pi\leftrightarrow [\Delta (1232)N^{-1}]\equiv\hat\pi, type treatment the in-medium gauge coupling g^\hat g, the (axial-) vector meson masses and f^π\hat f_\pi are found to decrease with density indicating the approach towards chiral restoration phase in the language of in-medium effective fields. In the second part of our analysis, we evaluate the (first) in-medium Weinberg sum rule which relates vector and axial-vector correlators to the pion decay constant. Using in-medium ρ\rho/a1a_1 spectral functions (computed in the two-level model) also leads to a substantial reduction of the pion decay constant with increasing density

    Demonstration of nanoimprinted hyperlens array for high-throughput sub-diffraction imaging

    Get PDF
    11124Nsciescopu

    Exchange Current Corrections to Neutrino--Nucleus Scattering

    Get PDF
    Relativistic exchange current corrections to neutrino--nucleus cross sections are presented assuming non--vanishing strange quark form factors for the constituent nucleons. For charged current processes the exchange current corrections can lower the impulse approximation results by 10\% while these corrections are found to be sensitive to both the nuclear density and the strange quark axial form factor of the nucleon for neutral current processes. Implications on the LSND experiment to determine this form factor are discussed.Comment: 11 pages, 2 figures, revtex 3.0, full postscript version of the file and figures available at http://www.nikhefk.nikhef.nl/projects/Theory/preprints/preprints.html To appear in Phys. Rev. Lett

    Renormalization Group Analysis of \rho-Meson Properties at Finite Density

    Get PDF
    We calculate the density dependence of the ρ\rho-meson mass and coupling constant(gρNNg_{\rho NN}) for ρ\rho-nucleon-nucleon vertex at one loop using the lagrangian where the ρ\rho-meson is included as a dynamical gauge boson of a hidden local symmetry. From the condition that thermodynamic potential should not depend on the arbitrary energy scale, renormalization scale, one can construct a renormalization group equation for the thermodynamic potential and argue that the various renormalization group coefficients are functions of the density or temperature. We calculate the β\beta-function for ρ\rho-nucleon-nucleon coupling constant (gρNNg_{\rho NN}) and γ\gamma-function for ρ\rho-meson mass (γmρ\gamma_{m_\rho}). We found that the ρ\rho-meson mass and the coupling constant for gρNNg_{\rho NN} drop as density increases in the low energy limit.Comment: 24 pages, 10 figures, revised versio
    corecore