16 research outputs found

    The Longest Words Using the Fewest Letters

    Get PDF
    An essay about metric entropy within the English language and examples of the longest words using the fewest letters

    A Model for Spheroid Versus Monolayer Response of SK-N-SH Neuroblastoma Cells to Treatment with 15-Deoxy-\u3cem\u3ePGJ\u3c/em\u3e\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    Researchers have observed that response of tumor cells to treatment varies depending on whether the cells are grown in monolayer, as in vitro spheroids or in vivo. This study uses data from the literature on monolayer treatment of SK-N-SH neuroblastoma cells with 15-deoxy-PGJ2 and couples it with data on growth rates for untreated SK-N-SH neuroblastoma cells grown as multicellular spheroids. A linear model is constructed for untreated and treated monolayer data sets, which is tuned to growth, death, and cell cycle data for the monolayer case for both control and treatment with 15-deoxy-PGJ2. The monolayer model is extended to a five-dimensional nonlinear model of in vitro tumor spheroid growth and treatment that includes compartments of the cell cycle (G1,S,G2/M) as well as quiescent (Q) and necrotic (N) cells. Monolayer treatment data for 15-deoxy-PGJ2 is used to derive a prediction of spheroid response under similar treatments. For short periods of treatment, spheroid response is less pronounced than monolayer response. The simulations suggest that the difference in response to treatment of monolayer versus spheroid cultures observed in laboratory studies is a natural consequence of tumor spheroid physiology rather than any special resistance to treatment

    A Model for Spheroid versus Monolayer Response of SK-N-SH Neuroblastoma Cells to Treatment with 15-Deoxy- PGJ

    Get PDF
    Researchers have observed that response of tumor cells to treatment varies depending on whether the cells are grown in monolayer, as in vitro spheroids or in vivo. This study uses data from the literature on monolayer treatment of SK-N-SH neuroblastoma cells with 15-deoxy-PGJ2 and couples it with data on growth rates for untreated SK-N-SH neuroblastoma cells grown as multicellular spheroids. A linear model is constructed for untreated and treated monolayer data sets, which is tuned to growth, death, and cell cycle data for the monolayer case for both control and treatment with 15-deoxy-PGJ2. The monolayer model is extended to a five-dimensional nonlinear model of in vitro tumor spheroid growth and treatment that includes compartments of the cell cycle (G1,S,G2/M) as well as quiescent (Q) and necrotic (N) cells. Monolayer treatment data for 15-deoxy-PGJ2 is used to derive a prediction of spheroid response under similar treatments. For short periods of treatment, spheroid response is less pronounced than monolayer response. The simulations suggest that the difference in response to treatment of monolayer versus spheroid cultures observed in laboratory studies is a natural consequence of tumor spheroid physiology rather than any special resistance to treatment

    A Model for Spheroid Versus Monolayer Response of SK-N-SH Neuroblastoma Cells to Treatment with 15-Deoxy-PGJ 2

    Get PDF
    Researchers have observed that response of tumor cells to treatment varies depending on whether the cells are grown in monolayer, as in vitro spheroids or in vivo. This study uses data from the literature on monolayer treatment of SK-N-SH neuroblastoma cells with 15-deoxy-PGJ 2 and couples it with data on growth rates for untreated SK-N-SH neuroblastoma cells grown as multicellular spheroids. A linear model is constructed for untreated and treated monolayer data sets, which is tuned to growth, death, and cell cycle data for the monolayer case for both control and treatment with 15-deoxy-PGJ 2. The monolayer model is extended to a five-dimensional nonlinear model of in vitro tumor spheroid growth and treatment that includes compartments of the cell cycle (G 1, S, G 2/M) as well as quiescent (Q) and necrotic (N) cells. Monolayer treatment data for 15-deoxy-PGJ 2 is used to derive a prediction of spheroid response under similar treatments. For short periods of treatment, spheroid response is less pronounced than monolayer response. The simulations suggest that the difference in response to treatment of monolayer versus spheroid cultures observed in laboratory studies is a natural consequence of tumor spheroid physiology rather than any special resistance to treatment

    Ultra-fast Au(III)-mediated Arylation of Cysteine

    Get PDF
    Through mechanistic work and rational design, we have developed the fastest organometallic abiotic Cys bioconjugation. As a result, the developed organometallic Au(III) bioconjugation reagents enable selective labeling of Cys moieties down to pM concentrations and allow for the rapid construction of complex heterostructures from peptides, proteins, and oligonucleo-tides. This work showcases how organometallic chemistry can be interfaced with biomolecules and lead to the range of reac-tivities that are largely unmatched by classical organic chemistry tools

    Breaking Kinetic Record for Cysteine Bioconjugation with Organometallic Reagents

    No full text
    Through mechanistic work and rational design, we have developed the fastest abiotic Cys bioconjugation. As a result, the developed organometallic Au(III) bioconjugation reagents enable selective labelling of Cys moieties down to pM concentrations and allow for the rapid construction of complex heterostructures from peptides, proteins, and oligonucleotides. This work showcases how organometallic chemistry can be interfaced with biomolecules and lead to the range of reactivities that are unmatched by classical organic chemistry tools
    corecore