# The Longest Words Using The Fewest Letters 

David M. Rheingold / Barnstable, Massachusetts
Austin Byl, Evan Crouch, Elizabeth Krodel, Celia Schiffman, Nico
Toutenhoofd / Boulder, Colorado

Claude Shannon may be remembered as the father of information theory for the formula engraved on his tombstone, but it's not the only measure of entropy he helped devise. Metric entropy gauges the amount of information proportionate to the number of unique characters in a message.

Within the English language, the maximum metric entropy individual words can attain is 0.5283 binary digits (or bits). This is the value of any three-letter word composed of three different letters (e.g., WHO).
Multiplying 0.5283 times the number of distinct letters equals 1.58 , and 2 raised to the power of 1.58 yields the same number of letters. These values hold true for any trigram with three different letters in a 26 -letter alphabet.

Measurements differ for written text involving other characters including numbers, punctuation, even spaces. Distinguishing between uppercase and lowercase would double the number of letters to 52. Adjusting for word frequency would further alter values as trigrams like WHO occur far more often in written English than, say, KEY. (How much more often? We found 3,598,284 instances of WHO in Project Gutenberg versus 58,863 of KEY, or 61 times as many.)

Our lexicon derives from three primary sources: Merriam-Webster, Webster's, and the Moby II wordlist, with a combined 382,843 words. Of these we find some 2,000 trigrams made up of three different letters, including WHO and KEY, tied for highest metric entropy.

At the opposite extreme we find much longer words with greater redundancy. The single word with the lowest ( 0.1150 ) metric entropy, DICHLORODIPHENYLTRICHLOROETHANE, with 31 letters also happens to be the longest word in all three wordsets. It is the chemical name of an insecticide known more commonly by its acronym DDT (occurring 213 times more frequently in Project Gutenberg). While DDT is also a trigram, its metric entropy ( 0.3061 ) is lower than that of WHO or KEY as it contains two rather than three unique letters.

Scientific and medical words tend to have the lowest metric entropy, along with palindromes (WOWWOW) and compound words consisting of repeating units (WALLAWALLA). Outside these overlapping categories remain long words consisting of few distinct letters. Here are some of the less technical ones:

| Word | Metric entropy | Letters Unique Ratio |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Humuhumunukunukuapuaa | 0.1155 bits | 21 | 7 | $33 \%$ |
| Antidisestablishmentarianism 0.1192 bits | 28 | 12 | $43 \%$ |  |
| Antiinstitutionalists | 0.1304 bits | 21 | 8 | $38 \%$ |
| Possessionlessness | 0.1306 bits | 18 | 7 | $39 \%$ |
| Transubstantiationalist | 0.1326 bits | 23 | 10 | $43 \%$ |
| Senselessness | 0.1337 bits | 13 | 4 | $31 \%$ |
| Antitintinnabularian | 0.1352 bits | 20 | 8 | $40 \%$ |
| Superincomprehensibleness | 0.1372 bits | 25 | 13 | $52 \%$ |
| Antinationalization | 0.1384 bits | 19 | 7 | $37 \%$ |
| Noncondescendingness | 0.1385 bits | 20 | 8 | $40 \%$ |
| Overrepresentativeness | 0.1386 bits | 22 | 10 | $45 \%$ |
| Nonconscientiousness | 0.1402 bits | 20 | 8 | $40 \%$ |


| Successlessness | 0.1431 bits | 15 | 6 | $40 \%$ |
| :--- | :--- | :--- | :--- | :--- |
| Sleevelessness | 0.1433 bits | 14 | 5 | $36 \%$ |
| Nonsententiousness | 0.1441 bits | 18 | 7 | $39 \%$ |

The last word on this list falls into a more rarefied class-autologicaland thus makes an appropriate stopping point.

## References

Golomb, Solomon W. (1984) "Amalgamate, Chemist!," Word Ways: Vol. 17: Iss. 1, Article 6. Available at:
https://digitalcommons.butler.edu/wordways/vol17/iss 1/6
Merriam-Webster Collegiate Reference Application Programming
Interface. Available at: https://www.dictionaryapi.com
Project Gutenberg DVD (2010). Available at:
http://www.gutenberg.org/wiki/Gutenberg:The_CD and_DVD_Project
Project Gutenberg Etext of Moby Word II. Available at https://github.com/dwyl/english-words

Sebastian, Anthony and Merriam, Renee (1988) "On Reflexivity in Words," Word Ways: Vol. 21: Iss. 3, Article 2. Available at: https://digitalcommons.butler.edu/wordways/vol21/iss3/2

Shannon, Claude E. and Weaver, Warren (1949) The Mathematical Theory of Communication, University of Illinois Press: Urbana and Chicago.

Soni, Jimmy and Goodman, Rob (2017) A Mind at Play: How Claude Shannon Invented the Information Age, Simon \& Schuster: New York.

Webster's Revised Unabridged Dictionary. Available at: http://www.gutenberg.org/ebooks/673

