218 research outputs found

    Unmanned Vehicle Systems Experiences at the Dryden Flight Research Facility

    Get PDF
    An overview is presented of the remotely piloted research vehicle (RPRV) activities at the NASA Dryden Flight Research Facility from their beginning to the present. The development of RPRV's as flight test tools is discussed, and system configuration is presented. Solutions derived from human factors experience related to flight activities and pilot responses have contributed to overall system capability. The development and use of visual displays, which are a critical feature of successful RPRV flights, are discussed as well as directions for future RPRV efforts

    Pilot Workload Measurement and Experience on Supersonic Cruise Aircraft

    Get PDF
    Aircraft parameters and physiological parameters most indicative of crew workload were investigated. Recommendations were used to form the basis for a continuing study in which variations of the interval between heart beats are used as a measure of nonphysical workload. Preliminary results are presented and current efforts in further defining this physiological measure are outlined

    Preliminary experience with a stereoscopic video system in a remotely piloted aircraft application

    Get PDF
    Remote piloting video display development at the Dryden Flight Research Facility of NASA's Ames Research Center is summarized, and the reasons for considering stereo television are presented. Pertinent equipment is described. Limited flight experience is also discussed, along with recommendations for further study

    Visual Systems for Remotely Controlled Vehicles

    Get PDF
    The Variable Acuity Remote Viewing System is discussed. It was conceived as a technique for resolving the field of view/resolution/ bandwidth tradeoffs that exist in remote viewing systems. This system is based on the fact that integration of the human eye acuity function shows only about 130,000 pixels are required to fully support the human vision. This quantity is well within the capabilities of conventional video systems. The technique utilizes a non-linear optical system in both the sensing and display equipment. The non-linearity is achieved by a special lens which translates a uniform pixel array on its image plane into the object field as a variable angular array. This lens will record the same angular detail the eye would see when viewing the same scene and compress this detail into a uniform matrix of equal sized picture elements on its image plane. This image can be scanned with a broadcast quality tv having a 525 line raster scan. Conventional transmission equipment can then also be used to send the image information to a remote location. When received, the image is projected by a light valve projector onto a hemispherical screen by an identical non-linear lens

    Passenger ride quality response to an airborne simulator environment

    Get PDF
    The present study was done aboard a special aircraft able to effect translations through the center of gravity with a minimum of pitch and roll. The aircraft was driven through controlled motions by an on-board analog computer. The input signal was selectively filtered Gaussian noise whose power spectra approximated that of natural turbulence. This input, combined with the maneuvering capabilities of this aircraft, resulted in an extremely realistic simulation of turbulent flight. The test flights also included varying bank angles during turns. Subjects were chosen from among NASA Flight Research Center personnel. They were all volunteers, were given physical examinations, and were queried about their attitudes toward flying before final selection. In profile, they were representative of the general flying public. Data from this study include (1) a basis for comparison with previous commercial flights, that is, motion dominated by vertical acceleration, (2) extension to motion dominated by lateral acceleration, and (3) evaluation of various bank angles

    The Quantum Refrigerator: The quest for absolute zero

    Full text link
    The scaling of the optimal cooling power of a reciprocating quantum refrigerator is sought as a function of the cold bath temperature as Tc0T_c \to 0. The working medium consists of noninteracting particles in a harmonic potential. Two closed-form solutions of the refrigeration cycle are analyzed, and compared to a numerical optimization scheme, focusing on cooling toward zero temperature. The optimal cycle is characterized by linear relations between the heat extracted from the cold bath, the energy level spacing of the working medium and the temperature. The scaling of the optimal cooling rate is found to be proportional to Tc3/2T_c^{3/2} giving a dynamical interpretation to the third law of thermodynamics

    Anesthesia assessment based on ICA permutation entropy analysis of two-channel EEG signals

    Get PDF
    Inaccurate assessment may lead to inaccurate levels of dosage given to the patients that may lead to intraoperative awareness that is caused by under dosage during surgery or prolonged recovery in patients that is caused by over dosage after the surgery is done. Previous research and evidence show that assessing anesthetic levels with the help of electroencephalography (EEG) signals gives an overall better aspect of the patient’s anesthetic state. This paper presents a new method to assess the depth of anesthesia (DoA) using Independent Component Analysis (ICA) and permutation entropy analysis. ICA is performed on two-channel EEG to reduce the noise then Wavelet and permutation entropy are applied on these channels to extract the features. A linear regression model was used to build the new DoA index using the selected features. The new index designed by proposed methods performs well under low signal quality and it was overall consistent in most of the cases where Bispectral index (BIS) may fail to provide any valid value

    Synthesis, structure, and opto-electronic properties of organic-based nanoscale heterojunctions

    Get PDF
    Enormous research effort has been put into optimizing organic-based opto-electronic systems for efficient generation of free charge carriers. This optimization is mainly due to typically high dissociation energy (0.1-1 eV) and short diffusion length (10 nm) of excitons in organic materials. Inherently, interplay of microscopic structural, chemical, and opto-electronic properties plays crucial role. We show that employing and combining advanced scanning probe techniques can provide us significant insight into the correlation of these properties. By adjusting parameters of contact- and tapping-mode atomic force microscopy (AFM), we perform morphologic and mechanical characterizations (nanoshaving) of organic layers, measure their electrical conductivity by current-sensing AFM, and deduce work functions and surface photovoltage (SPV) effects by Kelvin force microscopy using high spatial resolution. These data are further correlated with local material composition detected using micro-Raman spectroscopy and with other electronic transport data. We demonstrate benefits of this multi-dimensional characterizations on (i) bulk heterojunction of fully organic composite films, indicating differences in blend quality and component segregation leading to local shunts of photovoltaic cell, and (ii) thin-film heterojunction of polypyrrole (PPy) electropolymerized on hydrogen-terminated diamond, indicating covalent bonding and transfer of charge carriers from PPy to diamond

    A Synthesis of the Dibble et al. Controlled Experiments into the Mechanics of Lithic Production

    Get PDF
    Archaeologists have explored a wide range of topics regarding archaeological stone tools and their connection to past human lifeways through experimentation. Controlled experimentation systematically quantifies the empirical relationships among different flaking variables under a controlled and reproducible setting. This approach offers a platform to generate and test hypotheses about the technological decisions of past knappers from the perspective of basic flaking mechanics. Over the past decade, Harold Dibble and colleagues conducted a set of controlled flaking experiments to better understand flake variability using mechanical flaking apparatuses and standardized cores. Results of their studies underscore the dominant impact of exterior platform angle and platform depth on flake size and shape and have led to the synthesis of a flake formation model, namely the EPA-PD model. However, the results also illustrate the complexity of the flake formation process through the influence of other parameters such as core surface morphology and force application. Here we review the work of Dibble and colleagues on controlled flaking experiments by summarizing their findings to date. Our goal is to synthesize what was learned about flake variability from these controlled experiments to better understand the flake formation process. With this paper, we are including all of the data produced by these prior experiments and an explanation of the data in the Supplementary Information

    A stochastic model for heart rate fluctuations

    Full text link
    Normal human heart rate shows complex fluctuations in time, which is natural, since heart rate is controlled by a large number of different feedback control loops. These unpredictable fluctuations have been shown to display fractal dynamics, long-term correlations, and 1/f noise. These characterizations are statistical and they have been widely studied and used, but much less is known about the detailed time evolution (dynamics) of the heart rate control mechanism. Here we show that a simple one-dimensional Langevin-type stochastic difference equation can accurately model the heart rate fluctuations in a time scale from minutes to hours. The model consists of a deterministic nonlinear part and a stochastic part typical to Gaussian noise, and both parts can be directly determined from the measured heart rate data. Studies of 27 healthy subjects reveal that in most cases the deterministic part has a form typically seen in bistable systems: there are two stable fixed points and one unstable one.Comment: 8 pages in PDF, Revtex style. Added more dat
    corecore