47 research outputs found

    Economic value added of intellectual capital on the market value of listed companies in Tehran Stock Exchange

    Get PDF
    The present research studies the effects of the economic value added (EVA) and the intellectual capital on value of the listed companies’ value in Tehran Stock Exchange. The research was based on an applicable goal and it is descriptive and post-event in terms of nature. The sample of the research consists of 89 companies listed in Tehran Stock Exchange and the research period was from 2004 to 2011. In order to examine the research hypothesis, a multivariate regression is utilized using panel data. The results indicate spontaneous use of intellectual capital variable and the remaining profit according to the accepted principles of accounting increase description power of the market value fluctuations of the corporate remarkably

    Economic value added of intellectual capital on the market value of listed companies in Tehran Stock Exchange

    Get PDF
    The present research studies the effects of the economic value added (EVA) and the intellectual capital on value of the listed companies’ value in Tehran Stock Exchange. The research was based on an applicable goal and it is descriptive and post-event in terms of nature. The sample of the research consists of 89 companies listed in Tehran Stock Exchange and the research period was from 2004 to 2011. In order to examine the research hypothesis, a multivariate regression is utilized using panel data. The results indicate spontaneous use of intellectual capital variable and the remaining profit according to the accepted principles of accounting increase description power of the market value fluctuations of the corporate remarkably

    Economic value added of intellectual capital on the market value of listed companies in Tehran Stock Exchange

    Get PDF
    The present research studies the effects of the economic value added (EVA) and the intellectual capital on value of the listed companies’ value in Tehran Stock Exchange. The research was based on an applicable goal and it is descriptive and post-event in terms of nature. The sample of the research consists of 89 companies listed in Tehran Stock Exchange and the research period was from 2004 to 2011. In order to examine the research hypothesis, a multivariate regression is utilized using panel data. The results indicate spontaneous use of intellectual capital variable and the remaining profit according to the accepted principles of accounting increase description power of the market value fluctuations of the corporate remarkably

    Mitigation of radiation-induced lung pneumonitis and fibrosis using metformin and melatonin: A histopathological study

    Get PDF
    Background and objectives: Pneumonitis and fibrosis are the most common consequences of lung exposure to a high dose of ionizing radiation during an accidental radiological or nuclear event, and may lead to death, after some months to years. So far, some anti-inflammatory and antioxidant agents have been used for mitigation of lung injury. In the present study, we aimed to detect possible mitigatory effects of melatonin and metformin on radiation-induced pneumonitis and lung fibrosis. Materials and methods: 40 male mice were divided into 4 groups (10 mice in each). For control group, mice did not receive radiation or drugs. In group 2, mice were irradiated to chest area with 18 Gy gamma rays. In groups 3 and 4, mice were first irradiated similar to group 2. After 24 h, treatment with melatonin as well as metformin began. Mice were sacrificed after 100 days for determination of mitigation of lung pneumonitis and fibrosis by melatonin or metformin. Results: Results showed that both melatonin and metformin are able to mitigate pneumonitis and fibrosis markers such as infiltration of inflammatory cells, edema, vascular and alveolar thickening, as well as collagen deposition. Conclusion: Melatonin and metformin may have some interesting properties for mitigation of radiation pneumonitis and fibrosis after an accidental radiation event. © 2019 by the authors. Licensee MDPI, Basel, Switzerland

    Correction to: Virotheranostics, a double-barreled viral gun pointed toward cancer; ready to shoot? (Cancer Cell International, (2020), 20, 1, (131), 10.1186/s12935-020-01219-6)

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article. © 2020, The Author(s)

    Virotheranostics, a double-barreled viral gun pointed toward cancer; Ready to shoot?

    Get PDF
    Compared with conventional cancer treatments, the main advantage of oncolytic virotherapy is its tumor-selective replication followed by the destruction of malignant cells without damaging healthy cells. Accordingly, this kind of biological therapy can potentially be used as a promising approach in the field of cancer management. Given the failure of traditional monitoring strategies (such as immunohistochemical analysis (in providing sufficient safety and efficacy necessary for virotherapy and continual pharmacologic monitoring to track pharmacokinetics in real-time, the development of alternative strategies for ongoing monitoring of oncolytic treatment in a live animal model seems inevitable. Three-dimensional molecular imaging methods have recently been considered as an attractive approach to overcome the limitations of oncolytic therapy. These noninvasive visualization systems provide real-time follow-up of viral progression within the cancer tissue by the ability of engineered oncolytic viruses (OVs) to encode reporter transgenes based on recombinant technology. Human sodium/iodide symporter (hNIS) is considered as one of the most prevalent nuclear imaging reporter transgenes that provides precise information regarding the kinetics of gene expression, viral biodistribution, toxicity, and therapeutic outcomes using the accumulation of radiotracers at the site of transgene expression. Here, we provide an overview of pre-clinical and clinical applications of hNIS-based molecular imaging to evaluate virotherapy efficacy. Moreover, we describe different types of reporter genes and their potency in the clinical trials

    Reduction–oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics

    Get PDF
    Every year, millions of cancer patients undergo radiation therapy for treating and destroying abnormal cell growths within normal cell environmental conditions. Thus, ionizing radiation can have positive therapeutic effects on cancer cells as well as post-detrimental effects on surrounding normal tissues. Previous studies in the past years have proposed that the reduction and oxidation metabolism in cells changes in response to ionizing radiation and has a key role in radiation toxicity to normal tissue. Free radicals generated from ionizing radiation result in upregulation of cyclooxygenases (COXs), nitric oxide synthase (NOSs), lipoxygenases (LOXs) as well as nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), and their effected changes in mitochondrial functions are markedly noticeable. Each of these enzymes is diversely expressed in multiple cells, tissues and organs in a specific manner. Overproduction of reactive oxygen radicals (ROS), reactive hydroxyl radical (ROH) and reactive nitrogen radicals (RNS) in multiple cellular environments in the affected nucleus, cell membranes, cytosol and mitochondria, and other organelles, can specifically affect the sensitive and modifying enzymes of the redox system and repair proteins that play a pivotal role in both early and late effects of radiation. In recent years, ionizing radiation has been known to affect the redox functions and metabolism of NADPH oxidases (NOXs) as well as having destabilizing and detrimental effects on directly and indirectly affected cells, tissues and organs. More noteworthy, chronic free radical production may continue for years, increasing the risk of carcinogenesis and other oxidative stress-driven degenerative diseases as well as pathologies, in addition to late effect complications of organ fibrosis. Hence, knowledge about the mechanisms of chronic oxidative damage and injury in affected cells, tissues and organs following exposure to ionizing radiation may help in the development of treatment and management strategies of complications associated with radiotherapy (RT) or radiation accident victims. Thus, this medically relevant phenomenon may lead to the discovery of potential antioxidants and inhibitors with promising results in targeting and modulating the ROS/NO-sensitive enzymes in irradiated tissues and organ injury systems

    Targeting of inflammation for radiation protection and mitigation

    Get PDF
    Background: Inflammation is the response of the immune system that guards the body against several harmful stimuli in normal conditions. However, in response to ionizing radiation that leads to a massive cell death and DNA aberrations, this phenomenon causes various side effects in normal tissues. Inflammation is involved in various side effects such as gastrointestinal toxicity, mucositis, skin reactions, nervous system damage, pneumonitis, fibrosis and so on. Discussion: Observations have proposed that inflammatory mediators are involved in the toxic effect of ionizing radiation on non-irradiated cells via a phenomenon named bystander effect. Inflammation in both irradiated and non-irradiated cells can trigger genomic instability, leading to increased risk of carcinogenesis. Targeting the inflammatory mediators has been an interesting idea for improving the therapeutic ratio throughout the reduction of normal tissue injury as well as an increase in tumor response to radiotherapy. Conclusion: So far, various targets have been proposed for the amelioration of radiation toxicity in radiotherapy. Of different targets, NF-κB, COX-2, some of NADPH Oxidase subfamilies, TGF-β, p38 and the renin-angiotensin system have shown promising results. Interestingly, inhibition of these targets can help sensitize the tumor cells to the radiation treatment with some mechanisms such as suppression of angiogenesis and tumor growth as well as induction of apoptosis. In this review, we focus on recent advances on promising studies for targeting the inflammatory mediators in radiotherapy. © 2018 Bentham Science Publishers

    COX-2 in radiotherapy: A potential target for radioprotection and radiosensitization

    Get PDF
    Background: Each year, millions of people die from cancer. Radiotherapy is one of the main treatment strategies for cancer patients. Despite the beneficial roles of treatment with radiation, several side effects may threaten normal tissues of patients in the years after treatment. Discussion: Moreover, high incidences of second primary cancers may reduce therapeutic ratio of radiotherapy. The search for appropriate targets of radiosensitization of tumor cells as well as radioprotection of normal tissues is one of the most interesting aims in radiobiology. Cyclooxygenase-2 (COX-2), as an inflammatory mediator has attracted interests for both aims. COX-2 activity is associated with ROS production and inflammatory signs in normal tissues. These effects further amplify radiation toxicity in irradiated cells as well as adjacent cells through a phenomenon known as Bystander effect. Increased COX-2 expression in distant non-irradiated tissues causes oxidative DNA damage and elevated cancer risk. Moreover, in tumors, the activation of this enzyme can increase resistance of malignant cells to radiotherapy. Hence, the inhibition of COX-2 has been proposed for better therapeutic response and amelioration of normal tissues. Celecoxib is one of the most studied COX-2 inhibitor for radiosensitization and radioprotection, while some other inhibitors have shown interesting results. Conclusion: In this review, we describe the role of COX-2 in radiation normal tissue injury as well as irradiated bystander and non-targeted cells. In addition, mechanisms of COX-2 induced tumor resistance to radiotherapy and the potential role of COX-2 inhibition are discussed. © 2018 Bentham Science Publishers

    Radiation protection and mitigation by natural antioxidants and flavonoids: Implications to radiotherapy and radiation disasters

    Get PDF
    Background: Nowadays, ionizing radiations are used for various medical and terroristic aims. These purposes involve exposure to ionizing radiations. Hence, people are at risk for acute or late effects. Annually, millions of cancer patients undergo radiotherapy during their course of treatment. Also, some radiological or nuclear events in recent years pose a threat to people, hence the need for radiation mitigation strategies. Amifostine, the first FDA approved radioprotector, has shown some toxicities that limit its usage and efficiency. Due to these side effects, scientists have researched for other agents with less toxicity for better radioprotection and possible mitigation of the lethal effects of ionizing radiations after an accidental exposure. Flavonoids have shown promising results for radioprotection and can be administered in higher doses with less toxicity. Studies for mitigation of ionizing radiation-induced toxicities have concentrated on natural antioxidants. Detoxification of free radicals, management of inflammatory responses and attenuation of apoptosis signaling pathways in radiosensitive organs are the main mechanisms for radiation protection and mitigation with flavonoids and natural antioxidants. However, several studies have proposed that a combination in the form of some antioxidants may alleviate radiation toxicities more effectively in comparison to a single form of antioxidants. Conclusion: In this review, we focus on recent findings about natural radioprotectors and mitigators which are clinically applicable for radiotherapy patients, as well as injured people in possible radiation accidents. © 2018 Bentham Science Publishers
    corecore