22 research outputs found

    Nuevas localizaciones de metionina adenosiltransferasa I/III e implicaciĂłn de la regiĂłn C-terminal en su distribuciĂłn subcelular

    Full text link
    Tesis realizada en colaboración con el Instituto de Investigaciones Biomédicas Alberto SolsTesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina. Departamento de Bioquímica. Fecha de lectura: 23 de Febrero de 200

    Betaine homocysteine S-methyltransferase emerges as a new player of the nuclear methionine cycle

    Get PDF
    The paradigm of a cytoplasmic methionine cycle synthesizing/eliminating metabolites that are transported into/out of the nucleus as required has been challenged by detection of significant nuclear levels of several enzymes of this pathway. Here, we show betaine homocysteine S-methyltransferase (BHMT), an enzyme that exerts a dual function in maintenance of methionine levels and osmoregulation, as a new component of the nuclear branch of the cycle. In most tissues, low expression of Bhmt coincides with a preferential nuclear localization of the protein. Conversely, the liver, with very high Bhmt expression levels, presents a main cytoplasmic localization. Nuclear BHMT is an active homotetramer in normal liver, although the total enzyme activity in this fraction is markedly lower than in the cytosol. N-terminal basic residues play a role in cytoplasmic retention and the ratio of glutathione species regulates nucleocytoplasmic distribution. The oxidative stress associated with D-galactosamine (Gal) or buthionine sulfoximine (BSO) treatments induces BHMT nuclear translocation, an effect that is prevented by administration of N-acetylcysteine (NAC) and glutathione ethyl ester (EGSH), respectively. Unexpectedly, the hepatic nuclear accumulation induced by Gal associates with reduced nuclear BHMT activity and a trend towards increased protein homocysteinylation. Overall, our results support the involvement of BHMT in nuclear homocysteine remethylation, although moonlighting roles unrelated to its enzymatic activity in this compartment cannot be excluded.This work was supported by grants of the Ministerio de EconomĂ­a y Competitividad (BFU2008-00666 and BFU2009-08977 to MAP; SAF2012-36519 and SAF2015-68590R to DPS) and Instituto de Salud Carlos III (RETIC RIRAAF RD12/0013/0008 and ARADYAL RD16/0006/0021 to DPS).Peer reviewe

    The oncogene PDRG1 is an interaction target of methionine adenosyltransferases

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Methionine adenosyltransferases MAT I and MAT III (encoded by Mat1a) catalyze S-adenosylmethionine synthesis in normal liver. Major hepatic diseases concur with reduced levels of this essential methyl donor, which are primarily due to an expression switch from Mat1a towards Mat2a. Additional changes in the association state and even in subcellular localization of these isoenzymes are also detected. All these alterations result in a reduced content of the moderate (MAT I) and high V max (MAT III) isoenzymes, whereas the low V max (MAT II) isoenzyme increases and nuclear accumulation of MAT I is observed. These changes derive in a reduced availability of cytoplasmic S-adenosylmethionine, together with an effort to meet its needs in the nucleus of damaged cells, rendering enhanced levels of certain epigenetic modifications. In this context, the putative role of protein-protein interactions in the control of S-adenosylmethionine synthesis has been scarcely studied. Using yeast two hybrid and a rat liver library we identified PDRG1 as an interaction target for MATα1 (catalytic subunit of MAT I and MAT III), further confirmation being obtained by immunoprecipitation and pull-down assays. Nuclear MATα interacts physically and functionally with the PDRG1 oncogene, resulting in reduced DNA methylation levels. Increased Pdrg1 expression is detected in acute liver injury and hepatoma cells, together with decreased Mat1a expression and nuclear accumulation of MATα1. Silencing of Pdrg1 expression in hepatoma cells alters their steady-state expression profile on microarrays, downregulating genes associated with tumor progression according to GO pathway analysis. Altogether, the results unveil the role of PDRG1 in the control of the nuclear methylation status through methionine adenosyltransferase binding and its putative collaboration in the progression of hepatic diseases.This work was supported by grants of the Ministerio de Economía y Competitividad (BFU2005-00050, BFU2008-00666, BFU2009-08977), and the Instituto de Salud Carlos III Carlos III (RCMN C03/08 and PI05/0563

    Conformational signals in the C-terminal domain of methionine adenosyltransferase I/III determine its nucleocytoplasmic distribution

    Get PDF
    El pdf del artĂ­culo es la versiĂłn pre-print.The methyl donor S-adenosylmethionine is synthesized in mammalian cytosol by three isoenzymes. Methionine adenosyltransferase II is ubiquitously expressed, whereas isoenzymes I (homotetramer) and III (homodimer) are considered the hepatic enzymes. In this work, we identified methionine adenosyltransferase I/III in most rat tissues both in the cytoplasm and the nucleus. Nuclear localization was the preferred distribution observed in extrahepatic tissues, where the protein colocalizes with nuclear matrix markers. A battery of mutants used in several cell lines to decipher the determinants involved in methionine adenosyltransferase subcellular localization demonstrated, by confocal microscopy and subcellular fractionation, the presence of two partially overlapping areas at the C-terminal end of the protein involved both in cytoplasmic retention and nuclear localization. Immunoprecipitation of coexpressed FLAG and EGFP fusions and gel filtration chromatography allowed detection of tetramers and monomers in nuclear fractions that also exhibited S-adenosylmethionine synthesis. Neither nuclear localization nor matrix binding required activity, as demonstrated with the inactive F251D mutant. Nuclear accumulation of the active enzyme only correlated with histone H3K27 trimethylation among the epigenetic modifications evaluated, therefore pointing to the necessity of methionine adenosyltransferase I/III to guarantee the supply of S-adenosylmethionine for specific methylations. However, nuclear monomers may exhibit additional roles.This work was supported by grants of the Ministerio de EducaciĂłn y Ciencia (BMC2002-0243 and BFU2005-00050 to MAP and SAF2006-03489 to DPS) and the Instituto de Salud Carlos III (RCMN C03/08 to MAP and RD07/0064/0007 to DPS).Peer reviewe

    Multimerization of peptide antigens for production of stable immunogens in transgenic plants

    No full text
    Previous literature addressing the production of recombinant proteins in heterologous systems has consistently shown that proteins capable of forming complex structures tend to accumulate within host cells at relatively higher levels than monomeric forms. In this report, we translationally fused a 21-aminoacids long highly immunogenic peptide (2L21), derived from canine parvovirus (CPV) VP2 protein to a 41-aminoacid long tetramerization domain (TD) from the transcriptional factor p53. The chimerical DNA construction 2L21-TD was cloned in a binary plant transformation vector and used to transform Arabidopsis thaliana plants. Fifteen of the 25 transgenic lines obtained in the experiment showed detectable 2L21-TD RNA accumulation and from these we chose 4 to study 2L21-TD protein accumulation. Non-denaturing immunoblotting assays revealed that 2L21-TD chimeras effectively formed tetrameric complexes with yields reaching up to 12 ÎŒg/mg of soluble protein. Mice immunized by oral or intraperitoneal routes with crude protein extracts containing 2L21-TD protein were able to detect both 2L21-synthetic peptide and CPV VP2 proteins, with titers similar to those elicited by a previously reported fusion between 2L21 and the ÎČ-glucuronidase protein. These results demonstrate that multimerization directed by the small TD domain contributed to the stabilization and consequently to the accumulation of the 2L21 peptide in transgenic plants, without altering its native antigenicity and immunogenicity.Depto. de GenĂ©tica, FisiologĂ­a y MicrobiologĂ­aFac. de Ciencias BiolĂłgicasTRUEpu

    The ciliary EVC/EVC2 complex interacts with Smo and controls Hedgehog pathway activity in chondrocytes by regulating Sufu/Gli3 dissociation and Gli3 trafficking in primary cilia

    No full text
    et al.Hedgehog (Hh) signaling is involved in patterning and morphogenesis of most organs in the developing mammalian embryo. Despite many advances in understanding core components of the pathway, little is known about how the activity of the Hh pathway is adjusted in organ- and tissue-specific developmental processes. Mutations in EVC or EVC2 disrupt Hh signaling in tooth and bone development. Using mouse models, we show here that Evc and Evc2 are mutually required for localizing to primary cilia and also for maintaining their normal protein levels. Consistent with Evc and Evc2 functioning as a complex, the skeletal phenotypes in either single or double homozygous mutant mice are virtually indistinguishable. Smo translocation to the cilium was normal in Evc2-deficient chondrocytes following Hh activation with the Smo-agonist SAG. However, Gli3 recruitment to cilia tips was reduced and Sufu/Gli3 dissociation was impaired. Interestingly, we found Smo to co-precipitate with Evc/Evc2, indicating that in some cells Hh signaling requires direct interaction of Smo with the Evc/Evc2 complex. Expression of a dominantly acting Evc2 mutation previously identified in Weyer's acrodental dysostosis (Evc2ο43) caused mislocalization of Evc/Evc2ο43 within the cilium and also reproduced the Gli3-related molecular defects observed in Evc2-/- chondrocytes. Moreover, Evc silencing in Sufu-/- cells attenuated the output of the Hh pathway, suggesting that Evc/Evc2 also promote Hh signaling in the absence of Sufu. Together our data reveal that the Hh pathway involves Evc/Evc2-dependent modulations that are necessary for normal endochondral bone formation. © The Author 2012. Published by Oxford University Press. All rights reserved.This work was funded by the Spanish Ministry of Science and Innovation (SAF-17901), the European Union (LSHM-CT-2007-03741) and the RamĂłn Areces Foundation.Peer Reviewe

    Pull-down analysis of PDRG1 interaction with MATα2 and MAT II.

    No full text
    <p><b>(A)</b> Representative western blots of pull-down experiments using glutathione Sepharose beads loaded with GST or GST-PDRG1 and recombinant MATα2, MATÎČ or the hetero-oligomer MAT II; anti-GST, anti-MATα2 and MATÎČ were used for detection. The size of the standards is indicated on the left side of the panels. <b>(B)</b> Quantification of the MATα2/GST-PDRG1 signal ratio (mean ± SEM) from five independent pull-down experiments. <b>(C)</b> Representative western blots of pull-down experiments carried out with the truncated PDRG1 forms and recombinant MATα2 using anti-GST and anti-MATα2. The size of the standards is indicated on the left side of the panels. <b>(D)</b> Quantification of the MATα2/GST-PDRG1 signal ratio (mean ± SEM) from five independent pull-down experiments. All the incubations with MAT subunits or MAT II were carried out in the presence of excess GST to avoid unspecific binding. (*p≀0.05 vs GST-PDRG1).</p
    corecore