19 research outputs found

    The LHCb upgrade I

    Get PDF
    The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software

    Mechanical Design and Fabrication Aspects of Prototype SSR2 Jacketed Cavities

    No full text
    International audienceA total of 35 Superconducting SSR2 spoke cavities will be installed in the PIP II SRF linac at Fermilab and a total of 8 prototype SSR2 cavities will be manufactured for the prototype cryomodule. In this paper, the mechanical design and fabrication aspects of the prototype jacketed SSR2 cavity will be presented. RF and mechanical design activities were conducted in parallel directly on the jacketed cavity in order to minimize the number of design iterations. Also, the lessons learned from other spoke cavities experiences (i.e. SSR1 at Fermilab and ESS double spoke at IPNO) were considered since the early stage of the design

    Development of 352.2 Mhz Power Coupler Window for R&D Purposes

    No full text
    International audienceIPNO and Thales are conducting power couplers research and development. This paper present a new window design that fulfills European Spallation Source (ESS) requirements (400 kW RF peak power). The results of electromagnetic, thermal, thermo-mechanical, multipacting simulations and the consequences of the new ceramic window of power coupler will be reported. The multipacting simulations were performed with Musicc3D, software developed by IPNO. The new design overcome ceramic's weakness in tension and allows stronger constraints in the power coupler window

    Intraoperative Brain Imaging with a Miniature Probe Based on an Electrothermal Actuated MEMS Mirror

    No full text
    International audienceEndoscopic imaging imposes using miniature probe with high performance. We reported the design and characterization of a two-photon fluorescence miniature probe based on a dual-axis electrothermal MEMS mirror and dedicated for real-time brain imaging

    ESS Spoke Cryomodule and Test Valve Box

    No full text
    International audienceESS project aims being the world’s most powerful neutron source feeding multidisplinary researches. The superconducting part of the ESS linear accelerator includes 28 b=0.5 352.2 MHz SRF niobium double Spoke cavities. Paired in 13 cryomodules and held at 2K in a saturated helium bath those cavities will generate of an accelerating field of 9MV/m. The prototype Spoke cryomodule holds two cavities and their RF power couplers and integrates all the interfaces necessary to be operational within the linac machine. It is now being fabricated and its assembly will be performed with dedicated tooling and procedures in and out of the clean room. This prototype will be tested by the end of 2015 at IPNO site and then at full power at FREIA (Uppsala university) test stand. A valve box has thus been designed to take into account the specific features of this prototype cryomodule and of the cryogenic environments of both test sites. This valve box is also considered as a prototype of the cryogenic distribution of the linac Spoke section. This element will then be used for the tests of the series cryomodules. We propose to present this prototype Spoke cryomodule for ESS and the test valve box

    Improvement of Chemical Etching Capabilities (BCP) for SRF Spoke Resonators at IJCLab

    No full text
    International audienceBuffered chemical polishing (BPC) is the reference surface polishing adopted for ESS and MYRRHA SRF spoke resonators at IJCLab. This chemical treatment, in addition to improving the RF performance, fits into the frequency adjustment strategy of the jacketed cavity during its preparation phase. In the framework of the collaboration with Fermilab for PIP-II project, IJCLab has developed a new setup to perform rotational BCP. The implementation of a rotation during chemical etching improves significantly the homogeneity and quality of surface polishing. In this paper, we present the numerical analysis based on a fluid dynamics model. The goal is to estimate the acid flow characteristics inside the cavity, determine the influence of several parameters as mass flow rate and rotation speed and propose the best configuration for the new experimental setu

    ESS SRF Linear Accelerator Components Preliminary Results and Integration

    No full text
    International audienceThe European Spallation Source (ESS) is a pan-European project and one of world's largest research infrastructures based on neutron sources. This collaborative project is funded by a collaboration of 17 European countries and is under construction in Lund, Sweden. The 5 MW, 2.86 ms long pulse proton accelerator has a repetition frequency of 14 Hz (4 % duty cycle), and a beam current of 62.5 mA. The Superconducting Radio-Frequency (SRF) linac is composed of three families of Superconducting Radio-Frequency (SRF) cavities, which are being prototyped, counting the spoke resonators with a geometric beta of 0.5, medium-beta elliptical cavities (beta_{g}=0.67) and high-beta elliptical cavities (beta_{g}=0.86). After a description of the ESS linear accelerator layout, this article will focus on the recent progress towards integration of the first test results of the main critical components to be assembled in cryomodules, then in the ESS tunnel

    The Superconducting Radio-Frequency Linear Accelerator Components for the European Spallation Source: First Test Results

    No full text
    International audienceThe European Spallation Source requires a pulsed Linac with an average beam power on the target of 5MW which is about five times higher than the most powerful spallation source in operation today. Over 97% of the acceleration occurs in superconducting cavities. ESS will be the first accelerator to employ double spoke cavities to accelerate beam. Accelerating gradients of 9MV/meter is required in the spoke section. The spoke section will be followed by 36 elliptical 704 MHz cavities with a geometrical beta of 0.67 and elliptical 704 MHz cavities with a geometrical beta of 0.86. Accelerating gradients of 20MV/m is required in the elliptical section. Initial gradient test results will be presented in which results exceed expected requirements

    The LHCb upgrade I

    No full text
    International audienceThe LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software

    The LHCb upgrade I

    No full text
    The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software
    corecore