287 research outputs found

    Thermodynamic And Anharmonic Properties Of Forsterite, Alpha-Mg2Sio4 - Computer Modeling Versus High-Pressure And High-Temperature Measurements

    Get PDF
    Self-consistent minimum free-energy calculations of the structure and lattice dynamics of forsterite at high pressure (up to 30 GPa) and high temperature (up to 1850 K) have been performed using an approach based on the Born model of solids. In the free-energy minimization procedure, lattice dynamics and thermodynamic properties are calculated self-consistently within the quasi-harmonic approximation (QHA). The results of the free-energy minimizations am compared with recent spectroscopic studies of forsterite at high pressure and high temperature. The predicted variations of mode frequencies with compression am consistent with those obtained from high-pressure spectroscopy. On the other hand, the variations with temperature am underestimated. Because the variations of lattice dynamics with pressure are related to anharmonic properties such as the Gruneisen parameter and thermal expansion, it is concluded that most of the extrinsic (i.e., volume dependent) anharmonicity can be accounted for within the QHA. On the other hand, the variations of the lattice dynamics with temperature also include intrinsic (i.e., volume free) anharmonic effects, which are not accounted for in the QHA. In forsterite, these effects become significant for thermodynamic properties (heat capacities and thermal expansion) above 1200 K

    Punctuated Shutdown of Atlantic Meridional Overturning Circulation during Greenland Stadial 1.

    Full text link
    The Greenland Stadial 1 (GS-1; ~12.9 to 11.65 kyr cal BP) was a period of North Atlantic cooling, thought to have been initiated by North America fresh water runoff that caused a sustained reduction of North Atlantic Meridional Overturning Circulation (AMOC), resulting in an antiphase temperature response between the hemispheres (the 'bipolar seesaw'). Here we exploit sub-fossil New Zealand kauri trees to report the first securely dated, decadally-resolved atmospheric radiocarbon ((14)C) record spanning GS-1. By precisely aligning Southern and Northern Hemisphere tree-ring (14)C records with marine (14)C sequences we document two relatively short periods of AMOC collapse during the stadial, at ~12,920-12,640 cal BP and 12,050-11,900 cal BP. In addition, our data show that the interhemispheric atmospheric (14)C offset was close to zero prior to GS-1, before reaching 'near-modern' values at ~12,660 cal BP, consistent with synchronous recovery of overturning in both hemispheres and increased Southern Ocean ventilation. Hence, sustained North Atlantic cooling across GS-1 was not driven by a prolonged AMOC reduction but probably due to an equatorward migration of the Polar Front, reducing the advection of southwesterly air masses to high latitudes. Our findings suggest opposing hemispheric temperature trends were driven by atmospheric teleconnections, rather than AMOC changes

    Modeling Monetary Policy

    Full text link
    We develop a macroeconomic framework where money issupplied against only few eligible securities in open marketoperations. The relationship between the policy rate,expected inflation and consumption growth is affected bymoney market conditions, i.e. the varying liquidity value ofeligible assets and the associated risk. This induces a liquiditypremium, which explains the observed systematic wedgebetween the policy rate and consumption Euler interest ratethat standard models equate. It further implies a dampenedresponse of consumption to policy rate shocks that is humpshapedwhen we account for realistic central bank transfersand the dynamics of bond holdings

    Examining the effect of evaluation sample size on the sensitivity and specificity of COVID-19 diagnostic tests in practice: a simulation study

    Get PDF
    Background In response to the global COVID-19 pandemic, many in vitro diagnostic (IVD) tests for SARS-CoV-2 have been developed. Given the urgent clinical demand, researchers must balance the desire for precise estimates of sensitivity and specificity against the need for rapid implementation. To complement estimates of precision used for sample size calculations, we aimed to estimate the probability that an IVD will fail to perform to expected standards after implementation, following clinical studies with varying sample sizes. Methods We assumed that clinical validation study estimates met the ‘desirable’ performance (sensitivity 97%, specificity 99%) in the target product profile (TPP) published by the Medicines and Healthcare products Regulatory Agency (MHRA). To estimate the real-world impact of imprecision imposed by sample size we used Bayesian posterior calculations along with Monte Carlo simulations with 10,000 independent iterations of 5,000 participants. We varied the prevalence between 1 and 15% and the sample size between 30 and 2,000. For each sample size, we estimated the probability that diagnostic accuracy would fail to meet the TPP criteria after implementation. Results For a validation study that demonstrates ‘desirable’ sensitivity within a sample of 30 participants who test positive for COVID-19 using the reference standard, the probability that real-world performance will fail to meet the ‘desirable’ criteria is 10.7–13.5%, depending on prevalence. Theoretically, demonstrating the 'desirable' performance in 90 positive participants would reduce that probability to below 5%. A marked reduction in the probability of failure to hit ‘desirable’ specificity occurred between samples of 100 (19.1–21.5%) and 160 (4.3–4.8%) negative participants. There was little further improvement above sample sizes of 160 negative participants. Conclusion Based on imprecision alone, small evaluation studies can lead to the acceptance of diagnostic tests which are likely to fail to meet performance targets when deployed. There is diminished return on uncertainty surrounding an accuracy estimate above a total sample size of 250 (90 positive and 160 negative)

    Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa

    Get PDF
    There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6.Social Science and Humanities Research Council of Canada; NORAM; American-Scandinavian Foundation; Fundacao para a Ciencia e Tecnologia [SFRH/BPD/73598/2010]; IGERT [DGE 0801634]; Hyde Family Foundations; Institute of Human Origins; National Science Foundation [BCS-9912465, BCS-0130713, BCS-0524087, BCS-1138073]; John Templeton Foundation to the Institute of Human Origins at Arizona State Universit

    Gamma-ray spectroscopy measurements and simulations for uranium mining

    Get PDF
    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration evaluation by means of gamma measurements. This paper reports gamma-ray spectra, recorded with a high-purity coaxial germanium detector, on standard cement blocks with increasing uranium content, and the corresponding MCNP simulations. The detailed MCNP model of the detector and experimental setup has been validated by calculation vs. experiment comparisons. An optimization of the detector MCNP model is presented in this paper, as well as a comparison of different nuclear data libraries to explain missing or exceeding peaks in the simulation. Energy shifts observed between the fluorescence X-rays produced by MCNP and atomic data are also investigated. The qualified numerical model will be used in further studies to develop new gamma spectroscopy approaches aiming at reducing acquisition times, especially for ore samples with low uranium content
    corecore