30 research outputs found

    Plasma Glucose Levels for Red Drum Sciaenops Ocellatus in a Florida Estuarine Fisheries Reserve

    Get PDF
    Despite the significant value of the southeastern United States' red drum (Sciaenops ocellatus) fishery, there is a lack of clinical blood chemistry data. This was the first study to assess plasma glucose values as an indicator of stress response to evaluate variation and the effect of reproductive activity for wild adult red drum in Florida. Red drum (n=126) were collected from NASA's Kennedy Space Center waters during three reproductive periods in 2011. Samples were obtained from the branchial vessels of the gill arch. Plasma glucose levels were significantly different among reproductive periods, with the highest mean values recorded during the spawning period, September- October (38.23 mg / dL +/- 10.0). The glucose range was 17 - 69 mg / dL. Glucose values were lower during all three periods than previous values recorded for cultured or captive red drum studies. This may indicate that fish from this population were under less stress than other populations previously sampled

    Ecological Impacts of the Space Shuttle Program at John F. Kennedy Space Center, Florida

    Get PDF
    The Space Shuttle Program was one of NASAs first major undertakings to fall under the environmental impact analysis and documentation requirements of the National Environmental Policy Act of 1969 (NEPA). Space Shuttle Program activities at John F. Kennedy Space Center (KSC) and the associated Merritt Island National Wildlife Refuge (MINWR) contributed directly and indirectly to both negative and positive ecological trends in the region through the long-term, stable expenditure of resources over the 40 year program life cycle. These expenditures provided support to regional growth and development in conjunction with other sources that altered land use patterns, eliminated and modified habitats, and contributed to cultural eutrophication of the Indian River Lagoon. At KSC, most Space Shuttle Program related actions were conducted in previously developed facilities and industrial areas with the exception of the construction of the shuttle landing facility (SLF) and the space station processing facility (SSPF). Launch and operations impacts were minimal as a result of the low annual launch rate. The majority of concerns identified during the NEPA process such as potential weather modification, acid rain off site, and local climate change did not occur. Launch impacts from deposition of HCl and particulates were assimilated as a result of the high buffering capacity of the system and low launch and loading rates. Metals deposition from exhaust deposition did not display acute impacts. Sub-lethal effects are being investigated as part of the Resource Conservation and Recovery Act (RCRA) regulatory process. Major positive Space Shuttle Program effects were derived from the adequate resources available at the Center to implement the numerous environmental laws and regulations designed to enhance the quality of the environment and minimize impacts from human activities. This included reduced discharges of domestic and industrial wastewater, creation of stormwater management systems, remediation of past contamination sites, implementation of hazardous waste management systems, and creation of a culture of sustainability. Working with partners such as the USFWS and the St Johns River Water Management District (SJRWMD), wetlands and scrub restoration and management initiatives were implemented to enhance fish and wildlife populations at the Center. KSC remains the single largest preserve on the east coast of Florida in part due to NASAs commitment to stewardship. Ongoing Ecological Program projects are directed at development of information and knowledge to address future KSC management questions including the transition to a joint government and commercial launch facility, enhanced habitat management requirements for wetlands and scrub, potential impacts of emerging contaminants, and adaptation to climate change including projected sea level rise over the next 50-75 years

    Fish and seagrass communities vary across a marine reserve boundary, but seasonal variation in small fish abundance overshadows top-down effects of large consumer exclosures

    No full text
    A growing number of examples indicate that large predators can alter seagrass ecosystem structure and processes via top-down trophic interactions. However, the nature and strength of those interactions varies with biogeographic context, emphasizing the need for region-specific investigations. We investigated spatial and temporal variation in predatory fish and seagrass communities across a Marine Protected Area (MPA) boundary in the Banana River Lagoon, Florida (USA), assessing trophic roles of intermediate consumers, and performing a large-consumer exclusion experiment in the MPA. Large, predatory fishes were most abundant within the MPA, while some mid-sized fishes were more abundant outside it. Small, seagrass-resident fishes, epifaunal invertebrates, and macrophytes also differed across the MPA boundary, but varied more among individual sites and seasonally. We cannot conclusively attribute these patterns to MPA status because we lack data from prior to MPA establishment and lack study replication at the level of MPA. Nevertheless, other patterns among our data are consistent with hypothesized mechanisms of top-down control. E.g., inverse seasonal patterns in the abundance of organisms at adjacent trophic levels, coupled with stable C and N isotope and gut contents data, suggest top-down control of crustacean grazers by seasonal recruitment of small fishes. Large-consumer exclosures in the MPA increased the abundance of mid-sized predatory and omnivorous fishes, but had few impacts on lower trophic levels. Results suggest that large-scale variation in large, predatory fish abundance in this system does not strongly affect seagrass-resident fish, invertebrate, and algal communities, which appear to be driven more by habitat structure and seasonal variation in small fish abundance

    Behavioral Response Of Reef Fish And Green Sea Turtles To Midfrequency Sonar

    No full text
    There is growing concern over the potential effects of high-intensity sonar on wild fish populations and commercial fisheries. Acoustic telemetry was employed to measure the movements of free-ranging reef fish and sea turtles in Port Canaveral, FL, in response to routine submarine sonar testing. Twenty-five sheepshead (Archosargus probatocephalus), 28 gray snapper (Lutjanus griseus), and 29 green sea turtles (Chelonia mydas) were tagged, with movements monitored for a period of up to 4 months using an array of passive acoustic receivers. Baseline residency was examined for fish and sea turtles before, during, and after the test event. No mortality of tagged fish or sea turtles was evident from the sonar test event. There was a significant increase in the daily residency index for both sheepshead and gray snapper at the testing wharf subsequent to the event. No broad-scale movement from the study site was observed during or immediately after the test

    Regional-Scale Migrations and Habitat Use of Juvenile Lemon Sharks (<i>Negaprion brevirostris</i>) in the US South Atlantic

    No full text
    <div><p>Resolving the geographic extent and timing of coastal shark migrations, as well as their environmental cues, is essential for refining shark management strategies in anticipation of increasing anthropogenic stressors to coastal ecosystems. We employed a regional-scale passive acoustic telemetry array encompassing 300 km of the east Florida coast to assess what factors influence site fidelity of juvenile lemon sharks (<i>Negaprion brevirostris</i>) to an exposed coastal nursery at Cape Canaveral, and to document the timing and rate of their seasonal migrations. Movements of 54 juvenile lemon sharks were monitored for three years with individuals tracked for up to 751 days. While most sharks demonstrated site fidelity to the Cape Canaveral region December through February under typical winter water temperatures, historically extreme declines in ocean temperature were accompanied by rapid and often temporary, southward displacements of up to 190 km along the Florida east coast. From late February through April each year, most sharks initiated a northward migration at speeds of up to 64 km day<sup>−1</sup> with several individuals then detected in compatible estuarine telemetry arrays in Georgia and South Carolina up to 472 km from release locations. Nineteen sharks returned for a second or even third consecutive winter, thus demonstrating strong seasonal philopatry to the Cape Canaveral region. The long distance movements and habitat associations of immature lemon sharks along the US southeast coast contrast sharply with the natal site fidelity observed in this species at other sites in the western Atlantic Ocean. These findings validate the existing multi-state management strategies now in place. Results also affirm the value of collaborative passive arrays for resolving seasonal movements and habitat preferences of migratory coastal shark species not easily studied with other tagging techniques.</p></div

    Using DNA Barcoding to Assess Caribbean Reef Fish Biodiversity: Expanding Taxonomic and Geographic Coverage

    Get PDF
    <div><p>This paper represents a DNA barcode data release for 3,400 specimens representing 521 species of fishes from 6 areas across the Caribbean and western central Atlantic regions (FAO Region 31). Merged with our prior published data, the combined efforts result in 3,964 specimens representing 572 species of marine fishes and constitute one of the most comprehensive DNA barcoding “coverages” for a region reported to date. The barcode data are providing new insights into Caribbean shorefish diversity, allowing for more and more accurate DNA-based identifications of larvae, juveniles, and unknown specimens. Examples are given correcting previous work that was erroneous due to database incompleteness.</p> </div

    Date and water temperature (°C) associated with lemon sharks passing by Ponce de Leon Inlet during annual migrations.

    No full text
    <p>Instances where sharks made forays to/past Ponce Inlet but quickly returned to Canaveral (n = 2) are excluded. *Burial of two receivers in fall 2011 limited the ability to detect south-migrating lemon sharks passing by this area.</p

    Ten best supported models from the 72 <i>a priori</i> models relating environmental and individual covariates to daily detection probability (DDP) of lemon sharks at Cape Canaveral.

    No full text
    <p>All models include state dependence variables (e.g., 1 day lag) to account for any effects of serial autocorrelation, and a random effect for shark and the month by Year. <sup>1</sup>minimum AIC<sub>c</sub>  = 4117.04.</p

    Distribution of lemon shark detections by receiver row and by hour of day

    No full text
    <p>. Nearshore receivers were located 250 m from the beach while offshore receivers were 1250 m from the beach.</p

    Passive acoustic tracking of lemon sharks in the US South Atlantic region.

    No full text
    <p><b>A)</b> Overall study region including locations of all lemon shark acoustic detections (green circles) and historic angler recaptures (red circles) from sharks released at Cape Canaveral. B) Map of the full FACT Array including all passive acoustic receivers (yellow dots). C) Close-up of the Canaveral Array including locations of two important lemon shark aggregation sites. Nearshore receivers are numbered 1–3 which correspond to the year of the study they were deployed.</p
    corecore