13 research outputs found

    Nusselt number prediction for oil and water in solar tubular cavity receivers

    Get PDF
    In this study, a numerical model was developed for prediction of Nusselt number in solar cavity receivers. Thermal oil and water were used as the working fluid. A dish concentrator with different shapes of the cavity receiver, including hemispherical, cylindrical, and cubical, was investigated. The different shapes of cavity receiver were studied under the same operating conditions for prediction of the internal heat transfer coefficient correlation for each cavity receiver. The system is investigated under the variation of solar radiation, flow rate, and inlet temperature of solar working fluids. The developed thermal model is validated based on the experimental data for the cylindrical cavity receiver using thermal oil. The results reveal that the hemispherical cavity receiver had the highest cavity heat gain, heat transfer coefficient, and Nusselt number values compared to two other cavity receivers. It could be concluded that the cavity heat gain, and heat transfer coefficient, and Nusselt number amounts had improved with increasing solar radiation, increasing flow rate, and decreasing inlet temperature of the working fluid. Some equations were suggested for prediction of Nusselt number with the variation of solar radiation, flow rate of the working fluid, and inlet temperature of working. It was concluded that application of thermal oil had resulted in higher Nusselt numbers than the use of water as the solar working fluid. Consequently, the application of oil is suggested for high-temperature systems

    Performance Investigation of Solar ORC Using Different Nanofluids

    Get PDF
    A parabolic solar dish concentrator, as the heat source of an organic Rankine cycle (ORC), can be used for power generation. Different types of tubular cavity receivers with different nanofluids can be considered for use in the solar dish collector to improve its efficiency. In the current research, an ORC with three different cavity receivers including hemispherical, cubical, and cylindrical are investigated using three nanofluids: Al2O3/oil, CuO/oil, and SiO2/oil. A numerical model is validated using experimental data. The ORC analysis is done for a constant evaporator pressure of 2.5 MPa, and condenser temperature of 38 °C. Methanol is employed as the ORC’s working fluid and a non-regenerative, ideal ORC system with different turbine inlet temperatures is considered. Furthermore, a fixed solar heat transfer fluid flow rate of 60 mL/s and dish diameter of 1.9 m is investigated. Results show that, compared to pure oil, the thermal efficiency of the cavity receivers increases slightly, and the pressure drop increases with the application of nanofluids. Furthermore, results show that the cubical cavity receiver, using oil/Al2O3 nanofluid, is the most efficient choice for application as the investigated solar ORC’s heat source

    4E assessment of power generation systems for a mobile house in emergency condition using solar energy: a case study

    Get PDF
    In this study, a solar parabolic trough concentrator (PTC) was evaluated as a heat source of a power generation system based on energy (E1), exergy (E2), environmental (E3), and economic (E4) analyses. Various configurations of power generation systems were investigated, including the solar SRC (SRC) and solar ORC (ORC). Water and R113 were used as heat transfer fluids of SRC and ORC system, respectively. It should be mentioned that the proposed solar systems were evaluated for providing the required power of a mobile house in an emergency condition such as an earthquake that was happened in Kermanshah, Iran, in 2016 with many homeless people. The PTC system was optically and thermally investigated based on sensitivity analysis. The optimized PTC system was assumed as a heat source of the RC with two various configurations for power generation. Then, the solar RC systems were investigated based on 4E analyses for providing the power of the mobile house based on various numbers of solar RC units. It was concluded that the solar SRC system could be recommended for achieving the highest 4E performance. The highest value of its energy efficiency was found at 24.60% and of his exergy at 26.37%. On the other hand, the ORC system has energy and exergy efficiencies at 17.64% and 18.91%, respectively, which are significantly lower than the efficiencies of the SRC system. The optimum heat source temperature for the SRC system is found at 650 K, while for the ORC system at 499 K. Moreover, the best economic performance was found with the SRC system with a payback period of 7.47 years. Finally, the CO2 mitigated per annum (φCO2) was estimated at 5.29 (tones year−1), and the carbon credit (ZCO2) was calculated equal to 76.71 ($ year−1)

    Performance Investigation of Solar ORC Using Different Nanofluids

    No full text
    A parabolic solar dish concentrator, as the heat source of an organic Rankine cycle (ORC), can be used for power generation. Different types of tubular cavity receivers with different nanofluids can be considered for use in the solar dish collector to improve its efficiency. In the current research, an ORC with three different cavity receivers including hemispherical, cubical, and cylindrical are investigated using three nanofluids: Al2O3/oil, CuO/oil, and SiO2/oil. A numerical model is validated using experimental data. The ORC analysis is done for a constant evaporator pressure of 2.5 MPa, and condenser temperature of 38 °C. Methanol is employed as the ORC’s working fluid and a non-regenerative, ideal ORC system with different turbine inlet temperatures is considered. Furthermore, a fixed solar heat transfer fluid flow rate of 60 mL/s and dish diameter of 1.9 m is investigated. Results show that, compared to pure oil, the thermal efficiency of the cavity receivers increases slightly, and the pressure drop increases with the application of nanofluids. Furthermore, results show that the cubical cavity receiver, using oil/Al2O3 nanofluid, is the most efficient choice for application as the investigated solar ORC’s heat source

    Study of PTC System with Rectangular Cavity Receiver with Different Receiver Tube Shapes Using Oil, Water and Air

    No full text
    Today, application of cavity receivers in solar concentrator systems is suggested as an interesting and novelty research subject for increasing thermal performance. In this research, a parabolic trough concentrator (PTC) with a rectangular cavity receiver was energetically investigated. The cavity receiver was studied with smooth and corrugated tubes. Different solar heat transfer fluids were considered, including water, air, and thermal oil. The effect of different operational parameters, as well as structural parameters, was investigated. The results showed that the linear rectangular cavity receiver with corrugated tube showed higher amounts of the absorbed heat and energy performance compared to the smooth tube as the cavity tube. Thermal performance of the rectangular cavity was improved using the application of water as the solar heat transfer fluid, which was followed by thermal oil and, finally, air, as the solar heat transfer fluid. Finally, it could be recommended that the rectangular cavity receiver with smooth tube using air as the solar heat transfer fluid is more appropriate for coupling this system with a Bryton cycle, whereas the rectangular cavity receiver with the corrugated tube using water or oil as the solar heat transfer fluid is recommended for achieving higher outlet temperature of the heat transfer fluid

    Evaluation of image processing technique in identifying rice blast disease in field conditions based on KNN algorithm improvement by K-means

    No full text
    Nowadays, rice farming is affected by various diseases that are economically significant and worthy of attention. One of these diseases is blast. Rice blast is one of the most important limiting factors in rice yield. The purpose of this study is the timely and rapid diagnosis of rice blast based on the image processing technique in field conditions. To do so, color images were prepared using image processing technique and improved KNN algorithm by K-means was used to classify the images in Lab color space to detect disease spots on rice leaves. Squared classification was based on Euclidean distance, and the Otsu method was used to perform an automatic threshold histogram of images based on shape or to reduce the gray level in binary images. Finally, to determine the efficiency of the designed algorithm, sensitivity, specificity, and overall accuracy were examined. The classification results showed that the sensitivity and specificity of the designed algorithm were 92% and 91.7%, respectively, in the determination of the number of disease spots, and 96% and 95.65% in determining the quality of disease spots. The overall accuracy of the designed algorithm was 94%. Generally, the results obtained showed that the above method has a great potential for timely diagnosis of rice blast

    Performance assessment of a solar dryer system using small parabolic dish and alumina/oil nanofluid: Simulation and experimental study

    Get PDF
    In this study, a small dish concentrator with a cylindrical cavity receiver was experimentally investigated as the heat source of a dryer. The system was examined for operation with pure thermal oil and Al2O3/oil nanofluid as the working fluids in the solar system. Moreover, the design, the development, and the evaluation of the dried mint plant are presented in this work. Also, the solar dryer system was simulated by the SolidWorks and ANSYS CFX software. On the other side, the color histogram of the wet and dried mint samples based on the RGB method was considered. The results revealed that the different temperatures of the solar working fluids at the inlet and outlet of the cavity receiver showed similar trend data compared to the variation of the solar radiation during the experimental test. Moreover, it is found that the cavity heat gain and thermal efficiency of the solar system was improved by using the nanofluid as the solar working fluid. Furthermore, the required time for mint drying had decreased by increasing the drying temperature and increasing air speed. The highest drying time was measured equal to 320 min for the condition of the air speed equal to 0.5 m/s and the drying temperature of 30 ◦C. A good agreement was observed between the calculated numerical results and measured experimental data. Finally, based on the color histogram of the wet and dried mint samples, it was concluded that intensity amount of the red color of the mint increased with the drying process compared to intensity amount of the red color of the wet mint sample. © 2019 by the authors

    Performance Assessment of a Solar Dryer System Using Small Parabolic Dish and Alumina/Oil Nanofluid: Simulation and Experimental Study

    Get PDF
    In this study, a small dish concentrator with a cylindrical cavity receiver was experimentally investigated as the heat source of a dryer. The system was examined for operation with pure thermal oil and Al2O3/oil nanofluid as the working fluids in the solar system. Moreover, the design, the development, and the evaluation of the dried mint plant are presented in this work. Also, the solar dryer system was simulated by the SolidWorks and ANSYS CFX software. On the other side, the color histogram of the wet and dried mint samples based on the RGB method was considered. The results revealed that the different temperatures of the solar working fluids at the inlet and outlet of the cavity receiver showed similar trend data compared to the variation of the solar radiation during the experimental test. Moreover, it is found that the cavity heat gain and thermal efficiency of the solar system was improved by using the nanofluid as the solar working fluid. Furthermore, the required time for mint drying had decreased by increasing the drying temperature and increasing air speed. The highest drying time was measured equal to 320 min for the condition of the air speed equal to 0.5 m/s and the drying temperature of 30 °C. A good agreement was observed between the calculated numerical results and measured experimental data. Finally, based on the color histogram of the wet and dried mint samples, it was concluded that intensity amount of the red color of the mint increased with the drying process compared to intensity amount of the red color of the wet mint sample

    Numerical comparison of a solar dish concentrator with different cavity receivers and working fluids

    No full text
    Solar concentrating technologies can produce heat for applications such as solar heating, solar cooling, industrial processes, desalination and electric power generation. For a solar dish collector, various solar receivers and working fluids at different flow rates can be used in different applications. In this work, three different cavity receivers are investigated for application in a solar dish collector using either water or Behran oil. A numerical model is used in the analysis, which is validated with experimental results from a hemispherical cavity receiver using oil as working fluid. The model is applied to compare hemispherical, cylindrical and cubical receivers under the same operating conditions using either water or oil, at a volumetric flow rate of 100 ml/s and solar irradiance of 800 W/m2, in order to determine the most suitable cavity for a specific solar dish. The system is investigated for inlet temperatures ranging from 40 °C to 90 °C with water as working fluid, and from 40 °C to 300 °C with Behran oil as working fluid. Emphasis is placed on the calculation of useful heat production, as well as pressure drop which influences pumping power. The exergetic efficiency criterion and the overall efficiency criterion are used in order to evaluate the useful heat production and the pumping power simultaneously. The high exergetic efficiency of the hemispherical cavity with thermal oil at high temperatures makes this case a promising choice for high-temperature solar dish collector applications. Moreover, water is found to be the best candidate for low-temperature applications since it leads to the higher thermal efficiency with lower pumping power demand.http://www.elsevier.com/ locate/jclepro2019-10-10hj2018Mechanical and Aeronautical Engineerin

    ANN model to predict the performance of parabolic dish collector with tubular cavity receiver

    No full text
    In this study, the thermal performance of a parabolic dish concentrator with a rectangular-tubular cavity receiver was investigated. The thermal oil was used as the working fluid in the solar collector system. The performance of the cavity receiver was studied in two ways as a numerical modeling method and the artificial neural networks (ANNs) methodology. In this study, three variable parameters including the different tube diameters equal to 5, 10, 22, and 35 mm, and different cavity depths equal to 0.5a, 0.75a, 1a, 1.5a, and 2a were considered. The purpose of this study is the prediction of the thermal performance of the cavity receiver in different amounts of solar irradiance, the cavity depth, and the diameter of tube by the ANN methodology. The main benefit of the ANN method, in comparison with the numerical modeling method, is the calculation time and cost saving. The results reveal that the ANN method can accurately predict the thermal performance of the cavity receiver at different variable parameters of the cavity depth, and tube diameter with R2 = 0.99 for each prediction
    corecore