19 research outputs found

    Música y Tecnología: Inteligencias múltiples e interdisciplinariedad y su incidencia en la motivación escolar. Estudio pre-experimental en base a la construcción de instrumentos de papel

    Get PDF
    122 p.Esta tesis sobre “Música y Tecnología: Inteligencias múltiples e interdisciplinariedad y su incidencia en la motivación escolar. Estudio preexperimental en base a la construcción de instrumentos de papel” tiene como objetivo general, motivar a los estudiantes de música en el aula, fortaleciendo así el trabajo en equipo. Además integra la interdisciplina, trabajando con otro módulo como Tecnología, para la creación de productos tecnológicos que solucionen problemas existentes. Para la investigación, se guiará por el enfoque de investigación mixto, ya que se abordará la Motivación que es cualitativa y el método de investigación - acción que es cuantitativa. El método de investigación acción es ideal para trabajar la propuesta didáctica ya que abarca variados puntos en los que fortaleceremos el trabajo, tales como: lo práctico, lo Participativo y Colaborativo, lo Emancipatorio, lo Interpretativo y lo Crítico. Se utilizará el modelo de Kemmis, ya que se ajusta completamente a los requerimientos, el cual se aplicará a los estudiantes de Sexto Año Básico del Colegio Nueva Holanda. Los resultados obtenidos en los test de inteligencia y en la encuesta de motivación, serán expuestos mediante gráficos, que darán a conocer lo que los estudiantes piensan de sus clases de Música con también sus fortalezas y debilidades que tienen, cabe mencionar que cada actividad del test, contiene capacidades que debería poseer todo estudiante. Como centro de este proceso, se desarrollará una Propuesta Didáctica, en la cual pondremos en práctica la construcción de instrumentos de papel, con decoraciones del pueblo Aymará y repertorio del mismo pueblo, con esto se pretende crear un método que refuerce la motivación de nuestros estudiantes mediante el trabajo colaborativo y participativo y así abarcar los tres puntos bases de nuestra tesis, La Motivación, la construcción de Instrumentos y el Pueblo Aymará. Finalmente, se pulirá dicha propuesta en base a los resultados y conclusiones para ofrecerla como aporte a quien desee utilizarla

    Protective Yeasts Control V. anguillarum Pathogenicity and Modulate the Innate Immune Response of Challenged Zebrafish (Danio rerio) Larvae

    Get PDF
    Indexación: Web of ScienceWe investigated mechanisms involved in the protection of zebrafish (Danio rerio) larvae by two probiotic candidate yeasts, Debaryornyces hansenii 97 (Dh97) and Yarrowia Iypolitica 242 (YI242), against a Vibrio anguillarum challenge. We determined the effect of different yeast concentrations (10(4)-10(7) CFU/mL) to: (i) protect larvae from the challenge, (ii) reduce the in vivo pathogen concentration and (iii) modulate the innate immune response of the host. To evaluate the role of zebrafish microbiota in protection, the experiments were performed in conventionally raised and germ free larvae. In vitro co-aggregation assays were performed to determine a direct yeast-pathogen interaction. Results showed that both yeasts significantly increased the survival rate of conventionally raised larvae challenged with V. anguillarum. The concentration of yeasts in larvae tended to increase with yeast inoculum, which was more pronounced for Dh97. Better protection was observed with Dh97 at a concentration of 106 CFU/mL compared to 104 CFU/mL. In germ-free conditions V anguillarum reached higher concentrations in larvae and provoked significantly more mortality than in conventional conditions, revealing the protective role of the host microbiota. Interestingly, yeasts were equally (Dh97) or more effective (YI242) in protecting germ-free than conventionally-raised larvae, showing that protection can be exerted only by yeasts and is not necessarily related to modulation of the host microbiota. Although none of the yeasts co aggregated with V anguillarum, they were able to reduce its proliferation in conventionally raised larvae, reduce initial pathogen concentration in germ-free larvae and prevent the upregulation of key components of the inflammatory/anti-inflammatory response (il1b, tnfa, c3, mpx, and il10, respectively). These results show that protection by yeasts of zebrafish larvae challenged with V anguillarum relates to an in vivo anti-pathogen effect, the modulation of the innate immune system, and suggests that yeasts avoid the host-pathogen interaction through mechanisms independent of co-aggregation. This study shows, for the first time, the protective role of zebrafish microbiota against V. anguillarum infection, and reveals mechanisms involved in protection by two non-Saccharomyces yeasts against this pathogen.http://journal.frontiersin.org/article/10.3389/fcimb.2016.00127/ful

    Microbiological Quality and Presence of Foodborne Pathogens in Raw and Extruded Canine Diets and Canine Fecal Samples

    Get PDF
    Pet food can be a source of microbiological hazards that might affect companion animals and owners. Even though owners usually rely on conventional pet diets, such as extruded diets, new feeding practices, such as raw meat-based diets (RMBDs), have grown. RMBDs' benefits are still scientifically uncertain, while its risks have been documented. The use of canine RMBDs might increase the exposure to zoonotic pathogens, such as Salmonella spp., Listeria monocytogenes, Campylobacter spp., among others. Identifying pathogen prevalence in canine food and pets is required to contribute to public health measures. The aims of this study were: (1) to compare the microbiological quality of RMBDs and extruded diets (2) to identify and compare the prevalence of Salmonella spp., Campylobacter jejuni, and L. monocytogenes from raw and extruded canine diets and canine fecal samples, and (3) to characterize pet owners according to the diet chosen to be used on their pets, their motivations for using RMBDs, and their knowledge about benefits and risks related to this feeding practice. Conventional and molecular microbiological methods were used to identify pathogen presence from food and fecal samples, while pulsed-field gel electrophoresis (PFGE) was performed to evaluate the clonal relationship between isolates. Aerobic plate counts for RMBDs were higher than those detected for extruded diets. Salmonella spp. and L. monocytogenes were isolated from 35.7% (15/42) RMBDs, while Salmonella spp., C. jejuni, and L. monocytogenes from 33.3% (11/33) fecal samples from RMBD-fed dogs. From the RMBD samples positive to Salmonella spp., chicken was the main meat ingredient composing the diets. PFGE analysis confirmed a genetic association between Salmonella spp. isolates from fecal and raw food samples from the same household. We did not detect pathogens from extruded food samples or feces from extruded-fed dogs. Using a survey, we identified dog owners' unawareness and/or underestimation of risks related to RMBDs. We demonstrated that canine raw pet food might be a source of zoonotic foodborne pathogens that represent a health risk for both humans and pets. While clinical findings caused by the mentioned pathogens vary among pets, the zoonotic potential implies a significant concern

    The Combined Effect of Cold and Copper Stresses on the Proliferation and Transcriptional Response of Listeria monocytogenes

    Get PDF
    Listeria monocytogenes is a foodborne pathogen that can cause severe disease in susceptible humans. This microorganism has the ability to adapt to hostile environmental conditions such as the low temperatures used by the food industry for controlling microorganisms. Bacteria are able to adjust their transcriptional response to adapt to stressful conditions in order to maintain cell homeostasis. Understanding the transcriptional response of L. monocytogenes to stressing conditions could be relevant to develop new strategies to control the pathogen. A possible alternative for controlling microorganisms in the food industry could be to use copper as an antimicrobial agent. The present study characterized three L. monocytogenes strains (List2-2, Apa13-2, and Al152-2A) adapted to low temperature and challenged with different copper concentrations. Similar MIC-Cu values were observed among studied strains, but growth kinetic parameters revealed that strain List2-2 was the least affected by the presence of copper at 8°C. This strain was selected for a global transcriptional response study after a 1 h exposition to 0.5 mM of CuSO4 × 5H2O at 8 and 37°C. The results showed that L. monocytogenes apparently decreases its metabolism in response to copper, and this reduction is greater at 8°C than at 37°C. The most affected metabolic pathways were carbohydrates, lipids and nucleotides synthesis. Finally, 15 genes were selected to evaluate the conservation of the transcriptional response in the other two strains. Results indicated that only genes related to copper homeostasis showed a high degree of conservation between the strains studied, suggesting that a low number of genes is implicated in the response to copper stress in L. monocytogenes. These results contribute to the understanding of the molecular mechanisms used by bacteria to overcome a combination of stresses. This study concluded that the application of copper in low concentrations in cold environments may help to control foodborne pathogens as L. monocytogenes in the industry

    Probiotic Yeasts and Vibrio anguillarum Infection Modify the Microbiome of Zebrafish Larvae

    Get PDF
    The host microbiome plays an essential role in health and disease. Microbiome modification by pathogens or probiotics has been poorly explored especially in the case of probiotic yeasts. Next-generation sequencing currently provides the best tools for their characterization. Debaryomyces hansenii 97 (D. hansenii 97) and Yarrowia lipolytica 242 (Y. lipolytica 242) are yeasts that protect wildtype zebrafish (Danio rerio) larvae against a Vibrio anguillarum (V. anguillarum) infection, increasing their survival rate. We investigate the effect of these microorganisms on the microbiome and neutrophil response (inflammation) in zebrafish larvae line Tg(Bacmpx:GFP)i114. We postulated that preinoculation of larvae with yeasts would attenuate the intestinal neutrophil response and prevent modification of the larval microbiome induced by the pathogen. Microbiome study was performed by sequencing the V3-V4 region of the 16S rRNA gene and prediction of metabolic pathways by Piphillin in conventionally raised larvae. Survival and the neutrophil response were both evaluated in conventional and germ-free conditions. V. anguillarum infection resulted in higher neutrophil number in the intestinal area compared to non-infected larvae in both conditions. In germ-free conditions, infected larvae pre-inoculated with yeasts showed fewer neutrophil numbers than infected larvae. In both conditions, only D. hansenii 97 increased the survival of infected larvae. Beta diversity of the microbiota was modified by V. anguillarum and both yeasts, compared to non-inoculated larvae. At 3 days post-infection, V. anguillarum modified the relative abundance of 10 genera, and pre-inoculation with D. hansenii 97 and Y. lipolytica 242 prevented the modification of 5 and 6 of these genera, respectively. Both yeasts prevent the increase of Ensifer and Vogesella identified as negative predictors for larval survival (accounting for 40 and 27 of the variance, respectively). In addition, yeast pre-inoculation prevents changes in some metabolic pathways altered by V. anguillarum’s infection. These results suggest that both yeasts and V. anguillarum can shape the larval microbiota configuration in the early developmental stage of D. rerio. Moreover, modulation of key taxa or metabolic pathways of the larval microbiome by yeasts can be associated with the survival of infected larvae. This study contributes to the understanding of yeast–pathogen–microbiome interactions, although further studies are needed to elucidate the mechanisms involved

    CutC is induced late during copper exposure and can modify intracellular copper content in Enterococcus faecalis

    No full text
    Artículo de publicación ISICopper is a micronutrient that is required for proper metabolic functioning of most prokaryotic and eukaryotic organisms. To sustain an adequate supply of copper, a cell requires molecular mechanisms that control the metal content to avoid copper toxicity. This toxicity comes primarily from the reactivity of copper, which can lead to the generation of free radicals. In bacteria, two independent systems are responsible for maintaining the balance of copper within the cells (Cop and Cut family proteins). Previous studies describe CutC as a member of the Cut family that is probably involved in copper homeostasis. However, the role of CutC in copper homeostasis is still unclear. In this work, a homolog of CutC was studied in Enterococcus faecalis, a bacterial model for copper homeostasis. The molecular 3D model of efCutC shows the presence of triose phosphate isomerase (TIM) barrel motifs, previously described in CutC crystals from other organisms, which illustrates the conservation of amino acids with the potential ability to coordinate copper. Through quantitative real-time PCR (qPCR), it was demonstrated that efcutC expression is induced late by copper stimulus, Interestingly this transcriptional response directly correlates with a significant increase in the intracellular copper concentration when the protein is absent in the bacteria, suggesting its participation in mechanisms related to efflux of the metal. Our results describe efCutC as a protein able to respond transcriptionally to copper and to participate in the control of copper homeostasis in E. faecalis. This bacterium is the first reported organism containing a cop operon and an active member of the Cut protein family.This work was financed by Fondecyt No. 1071083 and FONDAP No. 15090007 projects

    Synergistic effect of copper and low temperature over Listeria monocytogenes

    No full text
    Artículo de publicación ISIThe capacity to grow at low temperatures has allowed Listeria monocytogenes to become one of the primary food pathogens to date, representing a major public health problem worldwide. Several works have described the homeostatic response of L. monocytogenes under different copper (Cu) treatments growing at mild temperature (30 degrees C). The aims of this report were to evaluate if changes in the external concentration of Cu affected viability and Cu homeostasis of L. monocytogenes growing at low temperature. Ours results showed that L. monocytogenes growing at 8 degrees C had a reduced viability relative to 30 degrees C when exposed to Cu treatments. This decrease was correlated with an increase in the internal concentration of Cu, probably linked to the transcriptional down-regulation of mechanisms involved in Cu homeostasis. This combined effect of Cu and low temperature showed a synergistic impact over the viability and homeostasis of L. monocytogenes, where low temperature exacerbated the toxic effect of Cu. These results can be useful in terms of the use of Cu as an antibacterial agent.Grant CONICYT 791100002 FONDECYT 11121449 Fondo Nacional de Desarrollo de Areas Prioritarias, FONDAP, Center for Genome Regulation (CGR) 1509000

    Expression of copper-related genes in response to copper load

    No full text
    Copper is an essential micronutrient for all biological systems. Multiple proteins require one or more atoms of copper for proper structure and function, but excess of copper is toxic. To prevent the consequences of copper deficiency and overload, living organisms have evolved molecular mechanisms that regulate its uptake, intracellular traffic, storage, and efflux. Underlying some of the cellular responses to variations in copper levels are changes in the expression of genes encoding molecular components of copper metabolism. In recent years, genome-scale expression analysis in several eukaryotic models has allowed the identification of copper-responsive genes involved in copper homeostasis. Characterization of the transcriptional changes in response to varying copper levels include both genes directly involved in copper homeostasis and genes involved in different cellular process that, even though they are not directly connected to copper metabolism, change their expression during the cellular adaptation to copper availability. Evaluation of these gene expression patterns could aid in the identification of biologically relevant markers to monitor copper status in humans
    corecore