1,814 research outputs found

    Crotalus scutulatus scutulatus Crude Venom and Its Purified Cysteine-Rich Secretory Protein (Css-CRiSP)

    Get PDF
    Increased vascular permeability is a frequent outcome of viperid snakebite envenomation, leading to local and systemic complications. We reported that snake venom cysteine-rich secretory proteins (svCRiSPs) from North American pit vipers increase vascular permeability both in vitro and in vivo. They also induce acute activation of several adhesion and signaling molecules that may play a critical role in the pathophysiology of snakebites. Extracellular vesicles (EVs) have gained interest for their diverse functions in intercellular communication, regulating cellular processes, blood-endothelium interactions, vascular permeability, and immune modulation. They also hold potential as valuable biomarkers for diagnosing, predicting, and monitoring therapeutic responses in different diseases. This study aimed to identify proteins in peritoneal exudate and plasma EVs isolated from BALB/c mice following a 30 min post-injection of Crotalus scutulatus scutulatus venom and its purified CRiSP (Css-CRiSP). EVs were isolated from these biofluids using the EVtrap method. Proteomic analysis of exudate- and plasma-derived EVs was performed using LC-MS/MS. We observed significant upregulation or downregulation of proteins involved in cell adhesion, cytoskeleton rearrangement, signal transduction, immune responses, and vesicle-mediated transports. These findings suggest that svCRiSPs play a crucial role in the acute effects of venom and contribute to the local and systemic toxicity of snakebites

    Assessing Medical Student’s Ability to Interpret Traumatic Injuries on Computed Tomography Before and After the Third Year Clerkships

    Get PDF
    Introduction. Exposure to radiologic images during clinical rotationsmay improve students’ skill levels. This study aimed to quantifythe improvement in radiographic interpretation of life-threateningtraumatic injuries gained during third year clinical clerkships (MS-3). Methods. We used a paired-sample prospective study design tocompare students’ accuracy in reading computed tomography (CT)images at the beginning of their third year clerkships (Phase I) andagain after completion of all of their third year clerkships (Phase II).Students were shown life-threatening injuries that included head,chest, abdomen, and pelvic injuries. Overall scores for Phase II werecompared with Phase I, as well as sub-scores for each anatomicalregion: head, chest, abdomen, and pelvis. Results. Only scores from students participating in both Phase Iand Phase II (N = 57) were used in the analysis. After completingtheir MS3 clerkship, students scored significantly better overall andin every anatomical region. Phase I and Phase II overall mean scoreswere 1.2 ± 1.1 vs. 4.6 ± 1.8 (p < 0.001). Students improved the mostwith respect to injuries of the head and chest and the area of leastimprovement was in interpreting CT scans of the abdomen. Althoughimprovements in reading radiographic images were noted after theclerkship year, students accurately diagnosed only 46% of life-threateningimages on CT scan in the trauma setting. Conclusions. These results indicated that enhanced education isneeded for medical students to interpret CT scans.Kans J Med 2018;11(4):91-94

    Proteomic Profiling of Extracellular Vesicles Isolated from Plasma and Peritoneal Exudate in Mice Induced by Crotalus scutulatus scutulatus Crude Venom and Its Purified Cysteine-Rich Secretory Protein (Css-CRiSP)

    Get PDF
    Increased vascular permeability is a frequent outcome of viperid snakebite envenomation, leading to local and systemic complications. We reported that snake venom cysteine-rich secretory proteins (svCRiSPs) from North American pit vipers increase vascular permeability both in vitro and in vivo. They also induce acute activation of several adhesion and signaling molecules that may play a critical role in the pathophysiology of snakebites. Extracellular vesicles (EVs) have gained interest for their diverse functions in intercellular communication, regulating cellular processes, blood-endothelium interactions, vascular permeability, and immune modulation. They also hold potential as valuable biomarkers for diagnosing, predicting, and monitoring therapeutic responses in different diseases. This study aimed to identify proteins in peritoneal exudate and plasma EVs isolated from BALB/c mice following a 30 min post-injection of Crotalus scutulatus scutulatus venom and its purified CRiSP (Css-CRiSP). EVs were isolated from these biofluids using the EVtrap method. Proteomic analysis of exudate- and plasma-derived EVs was performed using LC-MS/MS. We observed significant upregulation or downregulation of proteins involved in cell adhesion, cytoskeleton rearrangement, signal transduction, immune responses, and vesicle-mediated transports. These findings suggest that svCRiSPs play a crucial role in the acute effects of venom and contribute to the local and systemic toxicity of snakebites. Key Contribution: This study reveals the immediate effects of crotaline CRiSP and crude venom by exploring the proteomic profile of peritoneal exudate- and plasma-derived EVs in mice injected with Css-CRiSP and C. s. scutulatus crude venom. Using the proteomic profile of exudate- and plasma-derived EVs provides a more comprehensive understanding of the pathophysiology of snakebites and allows for more precise targeting of therapeutic interventions. In addition, such profiling could also help identify novel biomarkers useful in predicting symptoms and progression of snakebite complications and facilitating the development of new treatments

    Three Experimental Phases of Cornstarch-Based Biodegradable Plastic

    Get PDF
    Three Experimental Phases of Cornstarch-Based Biodegradable Plastic is the focus of this current study whose purpose was to create a bio-plastic from eco-friendly materials as a platform for an alternative commercial plastic. This study used a pre-experimental research design where three bio-plastic experiments were monitored to identify which among them was likely to produce the most efficient bio-plastic. At the end of the study, it was concluded that in terms of elasticity, tear resistance, appearance, texture, and odor, Experimental Two with four tablespoons of cornstarch, one cup of water, two tablespoons of vinegar, and two tablespoons of glycerin, is the most reliable among the three experiments.                 Hence, this study recommends to the biologists and scientists that may use this study to help them find ways to lessen biological problems caused by non-biodegradable plastics; to the producers that the study may help them to create and manufacture bio-plastics and to improve the study using other materials for the product to last longer indoors; to the consumers that the study may let them know the reliability and liability of the plastic they use in their everyday life; and to the future researchers who will want to conduct a further study about bio-plastics, this study may serve as a related study and think of an intervention to improve the results from the problem

    Impact of Simultaneous Exposure to Arboviruses on Infection and Transmission by Aedes aegypti Mosquitoes

    Get PDF
    The recent emergence of both chikungunya and Zika viruses in the Americas has significantly expanded their distribution and has thus increased the possibility that individuals may become infected by more than one Aedes aegypti-borne virus at a time. Recent clinical data support an increase in the frequency of coinfection in human patients, raising the likelihood that mosquitoes could be exposed to multiple arboviruses during one feeding episode. The impact of coinfection on the ability of relevant vector species to transmit any of these viruses (that is, their vector competence) has not been determined. Thus, we here expose Ae. aegypti mosquitoes to chikungunya, dengue-2 or Zika viruses, both individually and as double and triple infections. Our results show that these mosquitoes can be infected with and can transmit all combinations of these viruses simultaneously. Importantly, infection, dissemination and transmission rates in mosquitoes are only mildly affected by coinfection

    Mosquitoes Transmit Unique West Nile Virus Populations During Each Feeding Episode

    Get PDF
    Arthropod-borne viruses (arboviruses), such as Zika virus, chikungunya virus, and West Nile virus (WNV), pose continuous threats to emerge and cause large epidemics. Often, these events are associated with novel virus variants optimized for local transmission that first arise as minorities within a host. Thus, the conditions that regulate the frequency of intrahost variants are important determinants of emergence. Here, we describe the dynamics of WNV genetic diversity during its transmission cycle. By temporally sampling saliva from individual mosquitoes, we demonstrate that virus populations expectorated by mosquitoes are highly diverse and unique to each feeding episode. After transmission to birds, however, most genetic diversity is removed by strong purifying selection. Further, transmission of potentially mosquito-adaptive WNV variants is strongly influenced by genetic drift in mosquitoes. These results highlight the complex evolutionary forces a novel virus variant must overcome to alter infection phenotypes at the population level

    Impact of Extrinsic Incubation Temperature on Natural Selection During Zika Virus Infection of Aedes Aegypti and Aedes Albopictus

    Get PDF
    Arthropod-borne viruses (arboviruses) require replication across a wide range of temperatures to perpetuate. While vertebrate hosts tend to maintain temperatures of approximately 37°C-40°C, arthropods are subject to ambient temperatures which can have a daily fluctuation of \u3e 10°C. Temperatures impact vector competence, extrinsic incubation period, and mosquito survival unimodally, with optimal conditions occurring at some intermediate temperature. In addition, the mean and range of daily temperature fluctuations influence arbovirus perpetuation and vector competence. The impact of temperature on arbovirus genetic diversity during systemic mosquito infection, however, is poorly understood. Therefore, we determined how constant extrinsic incubation temperatures of 25°C, 28°C, 32°C, and 35°C control Zika virus (ZIKV) vector competence and population dynamics within Aedes aegypti and Aedes albopictus mosquitoes. We also examined fluctuating temperatures which better mimic field conditions in the tropics. We found that vector competence varied in a unimodal manner for constant temperatures peaking between 28°C and 32°C for both Aedes species. Transmission peaked at 10 days post-infection for Aedes aegypti and 14 days for Aedes albopictus. Conversely, fluctuating temperature decreased vector competence. Using RNA-seq to characterize ZIKV population structure, we identified that temperature alters the selective environment in unexpected ways. During mosquito infection, constant temperatures more often elicited positive selection whereas fluctuating temperatures led to strong purifying selection in both Aedes species. These findings demonstrate that temperature has multiple impacts on ZIKV biology, including major effects on the selective environment within mosquitoes

    Variation in Competence for ZIKV Transmission by Aedes aegypti and Aedes albopictus in Mexico

    Get PDF
    BACKGROUND: ZIKV is a new addition to the arboviruses circulating in the New World, with more than 1 million cases since its introduction in 2015. A growing number of studies have reported vector competence (VC) of Aedes mosquitoes from several areas of the world for ZIKV transmission. Some studies have used New World mosquitoes from disparate regions and concluded that these have a variable but relatively low competence for the Asian lineage of ZIKV. METHODOLOGY/PRINCIPAL FINDINGS: Ten Aedes aegypti (L) and three Ae. albopictus (Skuse) collections made in 2016 from throughout Mexico were analyzed for ZIKV (PRVABC59-Asian lineage) VC. Mexican Ae. aegypti had high rates of midgut infection (MIR), dissemination (DIR) and salivary gland infection (SGIR) but low to moderate transmission rates (TR). It is unclear whether this low TR was due to heritable salivary gland escape barriers or to underestimating the amount of virus in saliva due to the loss of virus during filtering and random losses on surfaces when working with small volumes. VC varied among collections, geographic regions and whether the collection was made north or south of the Neovolcanic axis (NVA). The four rates were consistently lower in northeastern Mexico, highest in collections along the Pacific coast and intermediate in the Yucatan. All rates were lowest north of the NVA. It was difficult to assess VC in Ae. albopictus because rates varied depending upon the number of generations in the laboratory. CONCLUSIONS/SIGNIFICANCE: Mexican Ae. aegypti and Ae. albopictus are competent vectors of ZIKV. There is however large variance in vector competence among geographic sites and regions. At 14 days post infection, TR varied from 8-51% in Ae. aegypti and from 2-26% in Ae. albopictus
    • …
    corecore