2,110 research outputs found

    Introduction to the AdS/CFT correspondence

    Full text link
    This is a pedagogical introduction to the AdS/CFT correspondence, based on lectures delivered by the author at the third IDPASC school. Starting with the conceptual basis of the holographic dualities, the subject is developed emphasizing some concrete topics, which are discussed in detail. A very brief introduction to string theory is provided, containing the minimal ingredients to understand the origin of the AdS/CFT duality. Other topics covered are the holographic calculation of correlation functions, quark-antiquark potentials and transport coefficients.Comment: 64 pages, 12 figures;v2: minor improvements;v3: references adde

    Exact Results and Holography of Wilson Loops in N=2 Superconformal (Quiver) Gauge Theories

    Full text link
    Using localization, matrix model and saddle-point techniques, we determine exact behavior of circular Wilson loop in N=2 superconformal (quiver) gauge theories. Focusing at planar and large `t Hooft couling limits, we compare its asymptotic behavior with well-known exponential growth of Wilson loop in N=4 super Yang-Mills theory. For theory with gauge group SU(N) coupled to 2N fundamental hypermultiplets, we find that Wilson loop exhibits non-exponential growth -- at most, it can grow a power of `t Hooft coupling. For theory with gauge group SU(N) x SU(N) and bifundamental hypermultiplets, there are two Wilson loops associated with two gauge groups. We find Wilson loop in untwisted sector grows exponentially large as in N=4 super Yang-Mills theory. We then find Wilson loop in twisted sector exhibits non-analytic behavior with respect to difference of two `t Hooft coupling constants. By letting one gauge coupling constant hierarchically larger/smaller than the other, we show that Wilson loops in the second type theory interpolate to Wilson loop in the first type theory. We infer implications of these findings from holographic dual description in terms of minimal surface of dual string worldsheet. We suggest intuitive interpretation that in both type theories holographic dual background must involve string scale geometry even at planar and large `t Hooft coupling limit and that new results found in the gauge theory side are attributable to worldsheet instantons and infinite resummation therein. Our interpretation also indicate that holographic dual of these gauge theories is provided by certain non-critical string theories.Comment: 52 pages, 7 figures v2. more figures embedded v3. minor stylistic changes, v4. published versio

    Wilson Loops in N=2 Super-Yang-Mills from Matrix Model

    Full text link
    We compute the expectation value of the circular Wilson loop in N=2 supersymmetric Yang-Mills theory with N_f=2N hypermultiplets. Our results indicate that the string tension in the dual string theory scales as the logarithm of the 't Hooft coupling.Comment: 37 pages, 9 figures; v2: Numerical factors corrected, simple derivation of Wilson loop and discussion of continuation to complex lambda added; v3: instanton partition function re-analyzed in order to take into account a contribution of the hypermultiplet

    Supersymmetric Open Wilson Lines

    Full text link
    In this paper we study Open Wilson Lines (OWL's) in the context of two Supersymmetric Yang Mills theories. First we consider four dimensional N=2 Supersymmetric Yang Mills Theory with hypermultiplets transforming in the fundamental representation of the gauge group, and find supersymmetric OWL's only in the superconformal versions of these theories. We then consider four dimensional N=4 SYM coupled to a three dimensional defect hypermultiplet. Here there is a semi-circular supersymmetric OWL, which is related to the ray by a conformal transformation. We perform a perturbative calculation of the operators in both theories, and discuss using localization to compute them non-perturbatively.Comment: 26 pages, 3 figure

    Thermodynamic Properties of Holographic Multiquark and the Multiquark Star

    Full text link
    We study thermodynamic properties of the multiquark nuclear matter. The dependence of the equation of state on the colour charges is explored both analytically and numerically in the limits where the baryon density is small and large at fixed temperature between the gluon deconfinement and chiral symmetry restoration. The gravitational stability of the hypothetical multiquark stars are discussed using the Tolman-Oppenheimer-Volkoff equation. Since the equations of state of the multiquarks can be well approximated by different power laws for small and large density, the content of the multiquark stars has the core and crust structure. We found that most of the mass of the star comes from the crust region where the density is relatively small. The mass limit of the multiquark star is determined as well as its relation to the star radius. For typical energy density scale of 10GeV/fm310\text{GeV}/\text{fm}^{3}, the converging mass and radius of the hypothetical multiquark star in the limit of large central density are approximately 2.63.92.6-3.9 solar mass and 15-27 km. The adiabatic index and sound speed distributions of the multiquark matter in the star are also calculated and discussed. The sound speed never exceeds the speed of light and the multiquark matters are thus compressible even at high density and pressure.Comment: 27 pages, 17 figures, 1 table, JHEP versio

    Gravel pits support waterbird diversity in an urban landscape

    Get PDF
    We assessed the benefit of 11 gravel pits for the settlement of waterbird communities in an urbanized area lacking natural wetlands. Gravel pits captured 57% of the regional species pool of aquatic birds. We identified 39 species, among which five were regionally rare. We used the Self Organizing Map algorithm to calculate the probabilities of presence of species, and to bring out habitat conditions that predict assemblage patterns. The age of the pits did not correlate with assemblage composition and species richness. There was a positive influence of macrophyte cover on waterbird species richness. Larger pits did not support more species, but species richness increased with connectivity. As alternative wetland habitats, gravel pits are attractive to waterbirds, when they act as stepping stones that ensure connectivity between larger natural and/or artificial wetlands separated in space

    Global AdS Picture of 1/2 BPS Wilson Loops

    Get PDF
    We study the holographic dual string configuration of 1/2 BPS circular Wilson loops in N=4 super Yang-Mills theory by using the global coordinate of AdS. The dual string worldsheet is given by the Poincare disk AdS_2 sitting at a constant global time slice of AdS_5. We also analyze the correlator of two concentric circular Wilson loops from the global AdS perspective and study the phase transition associated with the instability of annulus worldsheet connecting the two Wilson loops.Comment: 14 pages, 3 figures, v2: discussion on two branches corrected, v3: reference adde

    Ladders for Wilson Loops Beyond Leading Order

    Full text link
    We set up a general scheme to resum ladder diagrams for the quark-anti-quark potential in N=4 super-Yang-Mills theory, and do explicit calculations at the next-to-leading order. The results perfectly agree with string theory in AdS(5)xS(5) when continued to strong coupling, in spite of a potential order-of-limits problem.Comment: 18 pages, 5 figure

    A new path to measure antimatter free fall

    Get PDF
    We propose an experiment to measure the free fall acceleration of neutral antihydrogen atoms. The originality of this path is to first produce the Hbar+ ion

    Gluon Scattering Amplitudes in Finite Temperature Gauge/Gravity Dualities

    Full text link
    We examine the gluon scattering amplitude in N=4 super Yang-Mills at finite temperature with nonzero R-charge densities, and in Non-Commutative gauge theory at finite temperature. The gluon scattering amplitude is defined as a light-like Wilson loop which lives at the horizon of the T-dual black holes of the backgrounds we consider. We study in detail a special amplitude, which corresponds to forward scattering of a low energy gluon off a high energy one. For this kinematic configuration in the considered backgrounds, we find the corresponding minimal surface which is directly related to the gluon scattering amplitude. We find that for increasing the chemical potential or the non-commutative parameter, the on-shell action corresponding to our Wilson loop in the T-dual space decreases. For all of our solutions the length of the short side of the Wilson loop is constrained by an upper bound which depends on the temperature, the R-charge density and the non-commutative parameter. Due to this constraint, in the limit of zeroth temperature our approach breaks down since the upper bound goes to zero, while by keeping the temperature finite and letting the chemical potential or the non-commutative parameter to approach to zero the limit is smooth.Comment: 30 pages, 16 figures, minor corrections (plus improved numerical computation for the non-commutative case
    corecore