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1. Introduction

In the AdS/CFT correspondence between N = 4 super Yang-Mills (SYM) and the

type IIB string theory on AdS5 ×S5, supersymmetric Wilson loops are interesting objects

to study. On the bulk gravity side, the expectation value of such Wilson loops is obtained

by computing the minimal area of string worldsheet ending on the loop at the boundary

of AdS [1,2]. The string worldsheet which is holographically dual to a supersymmetric

Wilson loop is generally characterized as a pseudo-holomorphic curve on AdS5 × S5 [3,4].

However, it would be nice to have a more intuitive picture of dual worldsheet.

In the case of a 1/2 BPS circular Wilson loop, the dual worldsheet was obtained in the

Pincaré coordinate of AdS5 [5]. In this paper, we consider the worldsheet dual of 1/2 BPS

circular Wilson loops using the global coordinate of AdS5. This global AdS description of

Wilson loop is closely related to the radial quantization of N = 4 SYM, since the N = 4

SYM defined on R × S3 is dual to type IIB string theory on global AdS5. We find that

the dual worldsheet of 1/2 BPS circular Wilson loop is the Poincaré disk sitting at a fixed

global time of AdS5. Using this picture, we revisit the holographic computation of the

correlator of two concentric 1/2 BPS circular Wilson loops studied in [6]. As discussed in

[6], when the ratio of radii of the two circles exceeds a certain critical value, the worldsheet

of annulus topology in the bulk AdS ceases to exist, and this leads to an analogue of

Gross-Ooguri phase transition [7]. We analyze the annulus worldsheet connecting the two

loops using the global coordinate of AdS5.

This paper is organized as follows. In section 2, we first consider the radial quantiza-

tion picture of 1/2 BPS circular Wilson loops in the SYM side. Next we study the dual

worldsheet ending on the circular loop using the global coordinate of AdS5. In section

3, we study the correlator of two concentric circular Wilson loops from the global AdS

perspective and consider the Gross-Ooguri type transition of this correlator. In section 4,

we discuss some interesting future directions.

2. 1/2 BPS Wilson Loops from Global AdS Perspective

2.1. Circular Wilson Loops in Radial Quantization

In this paper we consider Wilson loops in N = 4 SYM on Euclidean signature space.

It is well-known that the 1/2 BPS Wilson loop in N = 4 SYM is given by [1]

W (C) =
1

N
TrP exp

[∮

C

ds
(
iAµ(x)ẋ

µ(s) + θIΦI(x)|ẋ(s)|
)]

, (2.1)
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where C is a circle or a straight line on R
4 in order to preserve 1/2 of supersymmetry. θI

in (2.1) is a constant unit 6-vector which specifies a point on S5. Let us consider a circular

Wilson loop C with radius a

C : x2
1 + x2

2 = a2, x3 = x4 = 0 . (2.2)

Here xµ (µ = 1, .., 4) denote the coordinate of Euclidean R
4.

In the radial quantization with respect to the origin of R4, we introduce the radial

time τ as the log of radial coordinate r =
√

x2
µ. Then the coordinate xµ of R4 is written

as

xµ = eτnµ , (2.3)

where nµ is a unit 4-vector n2
µ = 1 parametrizing S3. By the change of variable r = eτ ,

the metric of R4 becomes conformally equivalent to the metric of R× S3

ds2 = dr2 + r2dΩ2
3 = e2τ (dτ2 + dΩ2

3) , (2.4)

where dΩ2
3 is the metric of unit 3-sphere. In this radial quantization picture, the circular

loop C in (2.2) becomes a great circle of S3 = {n2
µ = 1}, and C is sitting at the constant

radial time τ

τ = log a, n2
1 + n2

2 = 1 . (2.5)

In the radial quantization, a local operator O∆ inserted at the origin of R4 corresponds

to a state |∆〉 via the state-operator correspondence

|∆〉 = O∆(0)|0〉 . (2.6)

What does the circular Wilson loop centered at the origin of R
4 correspond to in the

radial quantization? The above argument suggests that the circular Wilson loop W (C)

with radius a corresponds to an operator ŴC(τ) inserted on a fixed time slice τ = log a

of R× S3, and this operator ŴC(τ) acts on the Hilbert space H = {|∆〉} of N = 4 SYM.

For instance, the OPE of a Wilson loop W (C) and a local operator O∆ is written as

〈W (C)O∆(0)〉 = 〈0|ŴC(τ)|∆〉 . (2.7)

Similarly, the correlator of n concentric 1/2 BPS circular Wilson loops is written as

〈W (C1) · · ·W (Cn)〉 = 〈0|T
[
ŴC1

(τ1) · · · ŴCn
(τn)

]
|0〉 , (2.8)

where T denotes the time ordering with respect to the radial time τ (or the radial ordering

in the original R4 picture) and τi (i = 1, .., n) is related to the radius ai of loop Ci by

τi = log ai.
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2.2. Holographic Dual of Circular Wilson Loops

The gravity dual of Wilson loop in N = 4 SYM is given by the string worldsheet in

AdS5 × S5 bounded by the loop at the boundary of AdS5 [1,2]. In the case of 1/2 BPS

circular Wilson loop, the dual string worldsheet was obtained as a minimal surface in AdS5

which minimizes the Nambu-Goto action. In the Poincaré coordinate of (Euclidean) AdS5

ds2AdS5
=

dz2 + dxµdx
µ

z2
, (2.9)

the dual string worldsheet of circular Wilson loop C (2.2) is given by [5]

Σ : z2 + x2
1 + x2

2 = a2, x3 = x4 = 0 . (2.10)

One can easily see that this surface Σ ends on the loop C (2.2) at the boundary z = 0 of

AdS5.

What does this surface Σ look like in the global coordinate of AdS5? The metric of

AdS5 in the global coordinate is given by

ds2AdS5
= cosh2ρ dτ2 + dρ2 + sinh2ρ dΩ2

3 . (2.11)

To see the relation between the Poincaré coordinate and the global coordinate, it is con-

venient to view AdS5 as a hypersurface in R
1,5

ηabY
aY b = −1 , (2.12)

where Y a (a = 0, ..., 5) denotes the coordinate of R1,5 with metric ηab = (− + + + ++).

Above, we have set the AdS radius RAdS = 1 for simplicity. In terms of the Poincaré

coordinate (z, xµ), Y a is given by

Y 0 + Y 5 = z +
x2
µ

z
, Y 0 − Y 5 =

1

z
, Y µ =

xµ

z
(µ = 1, ..., 4) . (2.13)

On the other hand, Y a is written in the global coordinate as

Y 0 ± Y 5 = e±τ cosh ρ, Y µ = nµ sinh ρ, (2.14)

where nµ is a unit 4-vector n2
µ = 1 parametrizing S3. From (2.13) and (2.14), the Poincaré

coordinate (x, xµ) and the global coordinate (τ, ρ, nµ) are related as

z =
eτ

cosh ρ
, xµ = eτnµ tanh ρ . (2.15)
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One can check that the metric of AdS5 in Poincaré coordinate (2.9) becomes the metric

in the global coordinate (2.11) under this change of variables (2.15).

In the global coordinate, the boundary of AdS5 is located at ρ = ∞. At the boundary

of AdS5, (z, x
µ) in (2.15) becomes

z → 0, xµ → eτnµ (ρ → ∞) . (2.16)

By comparing (2.3) and (2.16), we find that the radial time τ of R× S3 is identified with

the global time τ of AdS5 at the boundary ρ = ∞. This is consistent with the fact that

the N = 4 SYM defined on R× S3 is dual to the type IIB string theory on global AdS5.

Now let us rewrite the minimal surface Σ (2.10) using the global coordinate. It turns

out that the equation of Σ in the global coordinate is simply given by the same equation

as the circular loop C in the radial quantization picture (2.5)

τ = log a, n2
1 + n2

2 = 1 . (2.17)

For this configuration of worldsheet Σ, the unit 4-vector nµ in (2.14) can be taken as

(n1, n2, n3, n4) = (cosφ, sinφ, 0, 0) . (2.18)

Plugging (2.17) and (2.18) into the relation between Poincaré and global coordinates (2.15),

we get

z =
a

cosh ρ
, x1 + ix2 = aeiφ tanh ρ . (2.19)

We can easily see that (z, x1, x2) in (2.19) satisfy the equation of Σ in the Poincaé co-

ordinate (2.10). Therefore, we conclude that (2.17) is the equation of minimal surface Σ

written in the global coordinate. We can also show that the metric on Σ induced from the

global AdS5 metric (2.11) is the metric of AdS2

ds2Σ = dρ2 + sinh2ρ dφ2 . (2.20)

To summarize, the minimal surface Σ in the global coordinate is a Poincaré disk AdS2

parametrized by ρ ∈ [0,∞] and φ ∈ [0, 2π] and Σ is sitting at a constant time slice

τ = log a of global AdS5 (see Fig. 1). Note that φ in (2.18) is the angle coordinate of the

great circle S1 = {n2
1 + n2

2 = 1} on the 3-sphere S3 = {n2
µ = 1}.
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time �
S3 AdS5

W (C) AdS2

� =
onst

Fig. 1: The string worldsheet Σ dual to a 1/2 BPS circular Wilson loop

W (C) is the Poincaré disk AdS2 bounded by the loop C. Σ is sitting at a

constant time slice of global AdS5.

2.3. Nambu-Goto Action in Global Coordinate

In this subsection we consider the equation of motion of Nambu-Goto string using the

global coordinate. The Nambu-Goto action in AdS5 is given by

S =

√
λ

2π

∫
d2σ

√
detG , (2.21)

where G is the worldsheet metric induced from the global AdS5 (2.11). Here we used the

fact that the string tension in the unit of AdS radius is related to the ’t Hooft coupling

λ = g2YMN of N = 4 SYM as

TF1R
2
AdS =

R2
AdS

2πα′ =

√
λ

2π
. (2.22)

In order to analyze the configuration of string worldsheet in the global coordinate of AdS5

(2.11), we make an ansatz

ρ = σ0, φ = σ1, τ = τ(σ0) = τ(ρ) , (2.23)

where (σ0, σ1) is the two-dimensional worldsheet coordinate. As in the previous subsec-

tion, φ denotes the angular coordinate of a great circle S1 ⊂ S3 inside AdS5. For this

configuration (2.23), the worldsheet metric induced from AdS5 (2.11) is given by

ds2F1 =

[
cosh2ρ

(
dτ

dρ

)2

+ 1

]
dρ2 + sinh2ρ dφ2 , (2.24)

and the Nambu-Goto action (2.21) becomes

S =

√
λ

2π

∫
dφdρ sinhρ

√
cosh2ρ

(
dτ

dρ

)2

+ 1 . (2.25)
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The equation of motion following from this action is

d

dρ




sinh ρ cosh2 ρdτ
dρ√

cosh2ρ
(

dτ
dρ

)2

+ 1


 = 0 . (2.26)

Clearly, dτ
dρ

= 0 is a solution of this equation and the induced metric (2.24) for the dτ
dρ

= 0

case is

ds2F1 = dρ2 + sinh2ρ dφ2. (2.27)

This is nothing but the metric of AdS2. This analysis gives a direct check that the Poincaré

disk sitting at τ = log a is a minimal surface.

The on-shell action of the minimal surface has a divergence coming from the large ρ

region, and we need to regularize it by introducing the IR cut-off ρ0 in the ρ-integral (2.25)

S =

√
λ

2π

∫ 2π

0

dφ

∫ ρ0

0

dρ sinh ρ =
√
λ(cosh ρ0 − 1) . (2.28)

The first term
√
λ cosh ρ0 in (2.28) diverges in the limit ρ0 → ∞, and this can be removed

by adding a boundary term to the action1 [1,9]. After removing this term, we get the

regularized action

Sreg = −
√
λ , (2.29)

which gives the leading large λ behavior of Wilson loop expectation value

〈W (C)〉 ≈ e−Sreg = e
√
λ . (2.30)

This large λ behavior of 〈W (C)〉 is reproduced by the exact computation in the N = 4

SYM side using the localization of path integral to a Gaussian matrix model [10,11,12].

3. Two Concentric Circular Wilson Loops

In this section, we study the correlator of two concentric circular Wilson loops from

the holographic dual viewpoint. This problem is studied in [6]2 and it is found that as

1 This procedure is reminiscent of the quantum entropy function formalism of Sen [8].
2 The holographic dual of two Wilson loops with equal radii separated in the x3-direction was

studied in [13,14].
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we vary the ratio a2

a1
of the radii a1, a2 of two circles there is a phase transition similar to

that found by Gross and Ooguri [7]. We revisit this problem using the global coordinate

of AdS5. As we will see below, the use of global coordinate enables us to visualize the dual

worldsheet very clearly.

In the radial quantization picture, the correlator 〈W (C1)W (C2)〉 of two circular Wil-

son loops is written as the two operator insertions at τi = log ai (i = 1, 2)

〈W (C1)W (C2)〉 = 〈0|ŴC2
(τ2)ŴC1

(τ1)|0〉 . (3.1)

Here we have assumed τ2 > τ1 without loss of generality. The two Wilson loops are

separated in the τ -direction by the amount τ0

τ0 = τ2 − τ1 = log
a2
a1

. (3.2)

This correlator has a connected part and a disconnected part

〈W (C1)W (C2)〉 = 〈W (C1)W (C2)〉conn + 〈W (C1)〉〈W (C2)〉 . (3.3)

time �
S3 W (C1) W (C2)

two disks

time �
S3

annulus
�0(B)

(A)

Fig. 2: (A) The worldsheet of annulus topology connecting the two loops

C1, C2 contributes to the connected part of the correlator of two Wilson loops

〈W (C1)W (C2)〉conn. The minimal surface of annulus topology does not exist

if τ0 is larger than some critical value τc. (B) The two disconnected disk

worldsheets correspond to the disconnected part of Wilson loop correlator

〈W (C1)〉〈W (C2)〉.
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In the large ’t Hooft coupling regime, the correlator 〈W (C1)W (C2)〉 has a holographic

dual description as a string worldsheet having the two circles C1 and C2 as boundaries.

In the global AdS5 picture, the disconnected part corresponds to the two Poincaré disks

sitting at τ = τ1 and τ = τ2, and the connected part corresponds to the annulus worldsheet

connecting C1 and C2 (see Fig. 2). Then the two-loop correlator (3.3) in the large λ regime

is approximately given by the regularized Nambu-Goto action

〈W (C1)W (C2)〉conn ≈ e−Sreg(annulus) ,

〈W (C1)〉〈W (C2)〉 ≈ e−2Sreg(disk) = e2
√
λ .

(3.4)

In the following we study the annulus worldsheet connecting the two circles using the

global AdS5 coordinate. We make the same ansatz (2.23) for the string configuration as in

the disk case, hence the equation of motion we should solve is (2.26). This equation (2.26)

can be integrated once

sinh ρ cosh2 ρdτ
dρ√

cosh2 ρ(dτ
dρ
)2 + 1

= const. (3.5)

Using the translation invariance in the τ -direction, we can set the locations of two loops

to be at τ1 = − 1
2τ0 and τ2 = 1

2τ0. In order for the annulus worldsheet to end on the two

circles at the boundary of AdS5, τ(ρ) should satisfy the following boundary condition

lim
ρ→∞

τ(ρ) = ±τ0
2

. (3.6)

Also, we require that τ(ρ) is vertical at the turning point ρ = ρmin (see Fig. 2(A))

lim
ρ→ρmin

dτ

dρ
= ∞ . (3.7)

From this condition the constant on the right hand side of (3.5) is fixed as

sinh ρ cosh2 ρdτ
dρ√

cosh2 ρ(dτ
dρ
)2 + 1

= cosh ρmin sinh ρmin . (3.8)

From this equation we get

dτ

dρ
= ± sinh2 2ρmin

cosh ρ
√
sinh2 2ρ− sinh2 2ρmin

. (3.9)
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The plus sign of (3.9) represents the right half of annulus 0 ≤ τ ≤ 1
2τ0, and the minus sign

corresponds to the left half − 1
2τ0 ≤ τ ≤ 0 (see Fig. 2(A)). On the right half of annulus,

the equation (3.9) is solved as

τ(ρ) =

∫ ρ

ρmin

dρ

cosh ρ

sinh 2ρmin√
sinh2 2ρ− sinh2 2ρmin

. (3.10)

The boundary condition (3.6) leads to the relation between τ0 and ρmin

τ0 = 2

∫ ∞

ρmin

dρ

cosh ρ

sinh 2ρmin√
sinh2 2ρ− sinh2 2ρmin

≡ f(ρmin) . (3.11)

By performing the change of variable t = sinh ρmin

sinh ρ
, the function f(ρmin) in (3.11) is written

as3

f(ρmin) = 2 cosh ρmin

[
K(i coth ρmin)−Π

(
− 1

sinh2 ρmin

, i coth ρmin

)]
, (3.12)

where K(k) and Π(n, k) denote the elliptic integrals of the first and third kind, respectively

K(k) =

∫ 1

0

dt√
(1− t2)(1− k2t2)

, Π(n, k) =

∫ 1

0

dt

(1− nt2)
√
(1− t2)(1− k2t2)

. (3.13)

The function f(ρmin) vanishes in the limit ρmin → 0,∞ as

f(ρmin) ∼ −2ρmin log ρmin (ρmin → 0),

f(ρmin) ∼
4
√
2π3

Γ
(
1
4

)2 e−ρmin (ρmin → ∞),
(3.14)

and f(ρmin) has a single maximum at some finite ρmin = ρc (see Fig. 3). As discussed in

[6], the existence of a maximal value τc = f(ρc) of the function f(ρmin) means that the

annulus worldsheet ceases to exist when the separation τ0 between the two loops is larger

than τc, and the annulus configuration exists only when 0 ≤ τ0 ≤ τc. This is analogous to

the phase transition discussed by Gross and Ooguri [7].

 0.664

 0.666

 0.668

 0.67

 0.672

 0.674

 0.676

 0.678

 0.68

 2  2.2  2.4  2.6  2.8  3

b

Fig. 3: This is a plot of f(ρmin) as a function of b = 1
sinh ρmin

. The function

f(ρmin) has a single maximum with maximal value τc(∼ 0.68).

3 Our function f(ρmin) corresponds to the function 2F (ka) in [13,6].
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Next we consider the on-shell action for this annulus configuration. Plugging dτ
dρ

in

(3.9) into the action (2.25), we find

S = 2
√
λ

∫ ∞

ρmin

dρ sinh ρ

√
cosh2 ρ

(
dτ

dρ

)2

+ 1

=
√
λ

∫ ∞

ρmin

dρ

cosh ρ

sinh2 2ρ√
sinh2 2ρ− sinh2 2ρmin

.

(3.15)

The factor of 2 in the first line of (3.15) comes from the fact that there are two branches

(± in (3.9)) for τ(ρ). To evaluate this integral, we separate it into two parts

S = S(1) + S(2) ,

S(1) =
√
λ

∫ ∞

ρmin

dρ

cosh ρ

√
sinh2 2ρ− sinh2 2ρmin ,

S(2) =
√
λ

∫ ∞

ρmin

dρ

cosh ρ

sinh2 2ρmin√
sinh2 2ρ− sinh2 2ρmin

.

(3.16)

For S(1), we further separate it into a divergent part S
(1)
div and a finite part S

(1)
fin

S
(1)
div =

√
λ

∫ ρ0

ρmin

dρ

cosh ρ
sinh 2ρ = 2

√
λ(cosh ρ0 − cosh ρmin),

S
(1)
fin =

√
λ

∫ ∞

ρmin

dρ

cosh ρ

(√
sinh2 2ρ− sinh2 2ρmin − sinh 2ρ

)
.

(3.17)

Here we have introduced the IR cut-off ρ0 in S
(1)
div as before. Note that S

(1)
fin is negative.

S(2) in (3.16) is proportional to the function f(ρmin) in (3.11)

S(2) =
1

2

√
λf(ρmin) sinh 2ρmin . (3.18)

After removing the divergent piece 2
√
λ cosh ρ0 in S

(1)
div, the regularized action for the

annulus worldsheet is found to be 4

Sreg(annulus) = −2
√
λ cosh ρmin +

1

2

√
λf(ρmin) sinh 2ρmin + S

(1)
fin . (3.19)

4 The first and the second terms of Sreg(annulus) in (3.19) have a simple interpretation: The

first term is the regularized area of two disks at τ = ±
1
2
τ0, where each disk has a hole of size

ρmin at its center. The second term represents the area of a cylinder I × S1
φ sitting at ρ = ρmin.

Here I denotes the interval of τ with length τ0 = f(ρmin). S
(1)
fin represents the correction to this

crude approximation that the annulus worldsheet is made of two disks with holes connected by a

cylinder of radius ρmin and length τ0.
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This is written as a function in ρmin, but we would like to study the behavior of this action

as a function of τ0 in the region 0 < τ0 < τc where the annulus worldsheet exists. When

rewriting this action as a function of τ0, we should be careful about the fact that there are

two solutions ρ
(1)
min, ρ

(2)
min for the equation τ0 = f(ρmin) since the function f(ρmin) takes a

maximum value τc at ρmin = ρc. We assume that ρ
(1)
min < ρc < ρ

(2)
min. The existence of two

solutions for τ0 = f(ρmin) implies that given a separation of two loops τ0 there are two

annulus configurations corresponding to ρ
(1,2)
min .

We are interested in the difference ∆S between the annulus action (3.19) and the

action of two disks 2Sreg(disk) = −2
√
λ

∆S = 2
√
λ(1− cosh ρmin) +

1

2

√
λf(ρmin) sinh 2ρmin + S

(1)
fin . (3.20)

As analyzed numerically in [6], the annulus action for the second branch ρ
(2)
min > ρc is

smaller than that of the first branch ρ
(1)
min < ρc. Therefore, the second branch ρmin > ρc

gives the dominant contribution to the connected part of correlator 〈W (C1)W (C2)〉conn.
In particular, ∆S in (3.20) becomes arbitrarily negative as ρmin → ∞, which corresponds

to the coincident limit of two loops τ0 → 0. This can be seen as follows. From (3.14), the

large ρmin limit of ∆S in (3.20) is written as

∆S ∼
√
λ

[
−1 +

√
2π3

Γ
(
1
4

)2

]
eρmin + S

(1)
fin . (3.21)

Since the coefficient of eρmin is negative and also S
(1)
fin < 0, ∆S → −∞ as ρmin → ∞. As

we increase τ0 from 0, ∆S becomes positive at certain value τ ′c, which occurs before the

disappearance of annulus solution, i.e. τ ′c < τc. At τ0 = τ ′c the annulus configuration

becomes unstable and collapses to two disks [7].

Next we consider the ρmin < ρc region. The annulus action for this branch is always

larger than that of two disks [6]. We can easily see that the annulus action (3.19) reduces

to the action of two disks in the limit ρmin → 0

lim
ρmin→0

∆S = 0 . (3.22)

Let us see that ∆S > 0 for small ρmin ≪ 1. Using (3.14) and S
(1)
fin ∼

√
λρ2min log ρmin we

find

∆S ∼ −
√
λρ2min log ρmin , (3.23)

which is indeed positive.
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4. Discussion

In this paper we have considered the minimal surface in the global AdS5 which is dual

to 1/2 BPS circular Wilson loops. The dual worldsheet is given by the Pincaré disk at a

fixed global time. We also revisited the computation of the correlator of two concentric

Wilson loops using the global coordinate of AdS5. The annulus worldsheet connecting

the two loops exists only when the separation τ0 between the two loops is less than some

critical value τc, and it ceases to exist when τ0 > τc. As argued in [6], this phase transition

is different from the point where the annulus and two disks change dominance. It would

be nice to understand the physical picture of this transition more clearly.

It would be interesting to study the radial quantization picture of less supersymmetric

Wilson loops or other operators such as surface operators. Another interesting direction

to study is the commutation relation between a ’t Hooft loop and a Wilson loop from the

bulk AdS viewpoint. For a circular ’t Hooft loop T (C), the dual object is a D1-brane with

AdS2 worldvolume sitting at a constant global time. In the radial quantization picture,

the ’t Hooft loop T (C) is represented by an operator T̂C(τ) and this operator does not

commute with the Wilson loop operator ŴC(τ) [15,16]

T̂C1
(τ1)ŴC2

(τ2) = e
2πi

N
ℓ(C1,C2)ŴC2

(τ2)T̂C1
(τ1) , (4.1)

where ℓ(C1, C2) is the linking number of two loops inside S3. Recently, the correlator of a

’t Hooft loop T (C1) and a Wilson loop W (C2) in N = 4 SYM is computed by using the

localization of path integral to the two-dimensional Yang-Mills theory on S2 [17]. This

localization technique works when C1 and C2 are linked on S3. It would be interesting

to understand the algebra (4.1) both from the gauge theory side and from the gravity

side 5. On the gravity side, the algebra (4.1) corresponds to exchanging the D1-brane at

τ = τ1 and the fundamental string at τ = τ2. It would be nice to see how the phase in

(4.1) appears in this change of ordering of D1-brane and F1-brane along the τ -direction in

global AdS5.
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