24 research outputs found

    The ICCAM platform study: An experimental medicine platform for evaluating new drugs for relapse prevention in addiction. Part B: fMRI description.

    Get PDF
    OBJECTIVES: We aimed to set up a robust multi-centre clinical fMRI and neuropsychological platform to investigate the neuropharmacology of brain processes relevant to addiction - reward, impulsivity and emotional reactivity. Here we provide an overview of the fMRI battery, carried out across three centres, characterizing neuronal response to the tasks, along with exploring inter-centre differences in healthy participants. EXPERIMENTAL DESIGN: Three fMRI tasks were used: monetary incentive delay to probe reward sensitivity, go/no-go to probe impulsivity and an evocative images task to probe emotional reactivity. A coordinate-based activation likelihood estimation (ALE) meta-analysis was carried out for the reward and impulsivity tasks to help establish region of interest (ROI) placement. A group of healthy participants was recruited from across three centres (total n=43) to investigate inter-centre differences. Principle observations: The pattern of response observed for each of the three tasks was consistent with previous studies using similar paradigms. At the whole brain level, significant differences were not observed between centres for any task. CONCLUSIONS: In developing this platform we successfully integrated neuroimaging data from three centres, adapted validated tasks and applied whole brain and ROI approaches to explore and demonstrate their consistency across centres.Medical Research Council (Grant ID: G1000018), GlaxoSmithKlineThis is the author accepted manuscript. The final version is available from SAGE Publications via http://dx.doi.org/10.1177/026988111666859

    Hippocampal neuroinflammation, functional connectivity, and depressive symptoms in multiple sclerosis

    Get PDF
    Depression, a condition commonly comorbid with multiple sclerosis (MS), is associated more generally with elevated inflammatory markers and hippocampal pathology. We hypothesized that neuroinflammation in the hippocampus is responsible for depression associated with MS. We characterized the relationship between depressive symptoms and hippocampal microglial activation in patients with MS using the 18-kDa translocator protein radioligand [18F]PBR111. To evaluate pathophysiologic mechanisms, we explored the relationships between hippocampal neuroinflammation, depressive symptoms, and hippocampal functional connectivities defined by resting-state functional magnetic resonance imaging. Methods The Beck Depression Inventory (BDI) was administered to 11 patients with MS and 22 healthy control subjects before scanning with positron emission tomography and functional magnetic resonance imaging. We tested for higher [18F]PBR111 uptake in the hippocampus of patients with MS relative to healthy control subjects and examined the correlations between [18F]PBR111 uptake, BDI scores, and hippocampal functional connectivities in the patients with MS. Results Patients with MS had an increased hippocampal [18F]PBR111 distribution volume ratio relative to healthy control subjects (p = .024), and the hippocampal distribution volume ratio was strongly correlated with the BDI score in patients with MS (r = .86, p = .006). Hippocampal functional connectivities to the subgenual cingulate and prefrontal and parietal regions correlated with BDI scores and [18F]PBR111 distribution volume ratio. Conclusions Our results provide evidence that hippocampal microglial activation in MS impairs the brain functional connectivities in regions contributing to maintenance of a normal affective state. Our results suggest a rationale for the responsiveness of depression in some patients with MS to effective control of brain neuroinflammation. Our findings also lend support to further investigation of the role of inflammatory processes in the pathogenesis of depression more generally

    Magnetic resonance imaging reveals the complementary effects of decongestant and Breathe Right Nasal Strips on internal nasal anatomy

    No full text
    Objectives/Hypothesis This magnetic resonance imaging (MRI) study of 26 subjects with nasal congestion was performed to assess in the complete nasal passage both the anatomical effect of the marketed Breathe Right Nasal Strip (BRNS) relative to placebo and the potential adjunctive effect of using a decongestant in combination with the BRNS. Study Design Randomized, crossover study. Methods The study consisted of two parts, the first involving application of either the BRNS or the placebo strip in a randomized, crossover design with evaluator blinding, and repeated MRI scanning; and the second a sequential process of decongestant administration, MRI scanning, application of the BRNS, and repeated MRI. The same anatomical MRI protocol was used throughout. Nasal patency was assessed in the whole nasal passage and eight subregions (by inferior–superior, anterior–posterior division). Numerical response scores representing subjective nasal congestion were also obtained. Results Results demonstrate significant anatomical enlargement with the BRNS relative to placebo (P < .001), as well as an additive effect of using a decongestant in combination with the BRNS; both supported by a strong and significant negative correlation with the subjective nasal response measures of nasal congestion (r = −0.98, P = .002). Furthermore, analysis of the nasal subregions indicates that this adjunctive effect arises from a partially localized action of the complementary products: the BRNS acting primarily anteriorly in the nose and the decongestant mainly posteriorly. Conclusions The BRNS alone significantly increases nasal patency and alleviates perceived nasal congestion, and additional relief of symptoms can be obtained with simultaneous use of a decongestant

    T2* measurement of the knee articular cartilage in osteoarthritis at 3T

    No full text
    To measure reproducibility, longitudinal and cross-sectional differences in T2* maps at 3 Tesla (T) in the articular cartilage of the knee in subjects with osteoarthritis (OA) and healthy matched controls. MRI data and standing radiographs were acquired from 33 subjects with OA and 21 healthy controls matched for age and gender. Reproducibility was determined by two sessions in the same day, while longitudinal and cross-sectional group differences used visits at baseline, 3 and 6 months. Each visit contained symptomological assessments and an MRI session consisting of high resolution three-dimensional double-echo-steady-state (DESS) and co-registered T2* maps of the most diseased knee. A blinded reader delineated the articular cartilage on the DESS images and median T2* values were reported. T2* values showed an intra-visit reproducibility of 2.0% over the whole cartilage. No longitudinal effects were measured in either group over 6 months. T2* maps revealed a 5.8% longer T2* in the medial tibial cartilage and 7.6% and 6.5% shorter T2* in the patellar and lateral tibial cartilage, respectively, in OA subjects versus controls (P <0.02). T2* mapping is a repeatable process that showed differences between the OA subject and control group

    The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans

    Get PDF
    SummaryObesity is a major public health issue worldwide. Understanding how the brain controls appetite offers promising inroads toward new therapies for obesity. Peptide YY (PYY) and glucagon-like peptide 1 (GLP-1) are coreleased postprandially and reduce appetite and inhibit food intake when administered to humans. However, the effects of GLP-1 and the ways in which PYY and GLP-1 act together to modulate brain activity in humans are unknown. Here, we have used functional MRI to determine these effects in healthy, normal-weight human subjects and compared them to those seen physiologically following a meal. We provide a demonstration that the combined administration of PYY3-36 and GLP-17-36 amide to fasted human subjects leads to similar reductions in subsequent energy intake and brain activity, as observed physiologically following feeding
    corecore