240 research outputs found

    Finite-temperature relativistic Landau problem and the relativistic quantum Hall effect

    Full text link
    This paper presents a study of the free energy and particle density of the relativistic Landau problem, and their relevance to the quantum Hall effect. We study first the zero temperature Casimir energy and fermion number for Dirac fields in a 2+1-dimensional Minkowski space-time, in the presence of a uniform magnetic field perpendicular to the spatial manifold. Then, we go to the finite-temperature problem, with a chemical potential, introduced as a uniform zero component of the gauge potential. By performing a Lorentz boost, we obtain Hall's conductivity in the case of crossed electric and magnetic fields.Comment: Final version, to appear in Journal of Physics A: Mathematical and Genera

    Pp65 antigenemia, plasma real-time PCR and DBS test in symptomatic and asymptomatic cytomegalovirus congenitally infected newborns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many congenitally cytomegalovirus-infected (cCMV) neonates are at risk for severe consequences, even if they are asymptomatic at birth. The assessment of the viral load in neonatal blood could help in identifying the babies at risk of sequelae.</p> <p>Methods</p> <p>In the present study, we elaborated the results obtained on blood samples collected in the first two weeks of life from 22 symptomatic and 48 asymptomatic newborns with cCMV diagnosed through urine testing. We evaluated the performances of two quantitative methods (pp65 antigenemia test and plasma Real-time PCR) and the semi-quantitative results of dried blood sample (DBS) test in the aim of identifying a valid method for measuring viral load.</p> <p>Results</p> <p>Plasma qPCR and DBS tests were positive in 100% of cases, antigenemia in 81%. Only the latter test gave quantitatively different results in symptomatic versus asymptomatic children. qPCR values of 10<sup>3 </sup>copies/ml were found in 52% of newborn. "Strong" DBS test positivity cases had higher median values of both pp65 positive PBL and DNA copies/ml than cases with a "weak" positivity.</p> <p>Conclusions</p> <p>As expected antigenemia test was less sensitive than molecular tests and DBS test performed better on samples with higher rates of pp65 positive PBL and higher numbers of DNA copies/ml. The prognostic significance of the results of these tests will be evaluated on completion of the ongoing collection of follow-up data of these children.</p

    The Intracellular DNA Sensor IFI16 Gene Acts as Restriction Factor for Human Cytomegalovirus Replication

    Get PDF
    Human interferon (IFN)-inducible IFI16 protein, an innate immune sensor of intracellular DNA, modulates various cell functions, however, its role in regulating virus growth remains unresolved. Here, we adopt two approaches to investigate whether IFI16 exerts pro- and/or anti-viral actions. First, the IFI16 gene was silenced using specific small interfering RNAs (siRNA) in human embryo lung fibroblasts (HELF) and replication of DNA and RNA viruses evaluated. IFI16-knockdown resulted in enhanced replication of Herpesviruses, in particular, Human Cytomegalovirus (HCMV). Consistent with this, HELF transduction with a dominant negative form of IFI16 lacking the PYRIN domain (PYD) enhanced the replication of HCMV. Second, HCMV replication was compared between HELFs overexpressing either the IFI16 gene or the LacZ gene. IFI16 overexpression decreased both virus yield and viral DNA copy number. Early and late, but not immediate-early, mRNAs and proteins were strongly down-regulated, thus IFI16 may exert its antiviral effect by impairing viral DNA synthesis. Constructs with the luciferase reporter gene driven by deleted or site-specific mutated forms of the HCMV DNA polymerase (UL54) promoter demonstrated that the inverted repeat element 1 (IR-1), located between −54 and −43 relative to the transcription start site, is the target of IFI16 suppression. Indeed, electrophoretic mobility shift assays and chromatin immunoprecipitation demonstrated that suppression of the UL54 promoter is mediated by IFI16-induced blocking of Sp1-like factors. Consistent with these results, deletion of the putative Sp1 responsive element from the HCMV UL44 promoter also relieved IFI16 suppression. Together, these data implicate IFI16 as a novel restriction factor against HCMV replication and provide new insight into the physiological functions of the IFN-inducible gene IFI16 as a viral restriction factor

    Functional Interaction of Nuclear Domain 10 and Its Components with Cytomegalovirus after Infections: Cross-Species Host Cells versus Native Cells

    Get PDF
    Species-specificity is one of the major characteristics of cytomegaloviruses (CMVs) and is the primary reason for the lack of a mouse model for the direct infection of human CMV (HCMV). It has been determined that CMV cross-species infections are blocked at the post-entry level by intrinsic cellular defense mechanisms, but few details are known. It is important to explore how CMVs interact with the subnuclear structure of the cross-species host cell. In our present study, we discovered that nuclear domain 10 (ND10) of human cells was not disrupted by murine CMV (MCMV) and that the ND10 of mouse cells was not disrupted by HCMV, although the ND10-disrupting protein, immediate-early protein 1 (IE1), also colocalized with ND10 in cross-species infections. In addition, we found that the UL131-repaired HCMV strain AD169 (vDW215-BADrUL131) can infect mouse cells to produce immediate-early (IE) and early (E) proteins but that neither DNA replication nor viral particles were detectable in mouse cells. Unrepaired AD169 can express IE1 only in mouse cells. In both HCMV-infected mouse cells and MCMV-infected human cells, the knocking-down of ND10 components (PML, Daxx, and SP100) resulted in significantly increased viral-protein production. Our observations provide evidence to support our hypothesis that ND10 and ND10 components might be important defensive factors against the CMV cross-species infection

    A nutritional approach to the prevention of cancer: from assessment to personalized intervention

    Get PDF
    Among lifestyle factors, nutrition is one of the most important determinants of health, and represents a pivotal element of cancer risk. Nonetheless, epidemiological evidences of the relationship between several cancers and specific foods and nutrients is still inadequate, and solid conclusions are missing. Indeed, caloric restriction without malnutrition is associated to cancer prevention. Food may be also the primary route of exposure to contaminants such as metals, persistent organic pollutants, and pesticides. Exposuredisease associations and the interplay with genetic susceptibility requires further studies on genetic variation, environment, lifestyle, and chronic disease in order to eliminate and reduce associated health risks, thus contributing to improve health outcomes for the population. A primary nutritional approach for Active and Healthy Ageing (AHA) has been developed by the Nutrition group of the European Innovation Partnership (EIP) on AHA. The working group on lifestyles of the Italian Ministry of Health has developed a comprehensive approach to adequate nutrition using a consensus methodology to collect and integrate the available evidences from the literature and from the Italian experiences at the regional level, to raise the interest of other experts and relevant stakeholders to outline and scale-up joint strategies for a primary nutritional approach to cancer prevention

    A Novel Human Cytomegalovirus Locus Modulates Cell Type-Specific Outcomes of Infection

    Get PDF
    Clinical strains of HCMV encode 20 putative ORFs within a region of the genome termed ULb′ that are postulated to encode functions related to persistence or immune evasion. We have previously identified ULb′-encoded pUL138 as necessary, but not sufficient, for HCMV latency in CD34+ hematopoietic progenitor cells (HPCs) infected in vitro. pUL138 is encoded on polycistronic transcripts that also encode 3 additional proteins, pUL133, pUL135, and pUL136, collectively comprising the UL133-UL138 locus. This work represents the first characterization of these proteins and identifies a role for this locus in infection. Similar to pUL138, pUL133, pUL135, and pUL136 are integral membrane proteins that partially co-localized with pUL138 in the Golgi during productive infection in fibroblasts. As expected of ULb′ sequences, the UL133-UL138 locus was dispensable for replication in cultured fibroblasts. In CD34+ HPCs, this locus suppressed viral replication in HPCs, an activity attributable to both pUL133 and pUL138. Strikingly, the UL133-UL138 locus was required for efficient replication in endothelial cells. The association of this locus with three context-dependent phenotypes suggests an exciting role for the UL133-UL138 locus in modulating the outcome of viral infection in different contexts of infection. Differential profiles of protein expression from the UL133-UL138 locus correlated with the cell-type dependent phenotypes associated with this locus. We extended our in vitro findings to analyze viral replication and dissemination in a NOD-scid IL2Rγcnull-humanized mouse model. The UL133-UL138NULL virus exhibited an increased capacity for replication and/or dissemination following stem cell mobilization relative to the wild-type virus, suggesting an important role in viral persistence and spread in the host. As pUL133, pUL135, pUL136, and pUL138 are conserved in virus strains infecting higher order primates, but not lower order mammals, the functions encoded likely represent host-specific viral adaptations
    • …
    corecore