102 research outputs found

    5G New Business Opportunities ā€“ New Business Models, Pricing, and Use Cases, Journal of Telecommunications and Information Technology, 2021, nr 2

    Get PDF
    This paper addresses how network operators may gain a reasonable return on their investment into 5G infrastructure. It first considers the 5G mobile network costs structure then applies this to three typical use case

    A practical review of energy saving technology for ageing populations

    Get PDF
    Fuel poverty is a critical issue for a globally ageing population. Longer heating/cooling requirements combine with declining incomes to create a problem in need of urgent attention. One solution is to deploy technology to help elderly users feel informed about their energy use, and empowered to take steps to make it more cost effective and efficient. This study subjects a broad cross section of energy monitoring and home automation products to a formal ergonomic analysis. A high level task analysis was used to guide a product walk through, and a toolkit approach was used thereafter to drive out further insights. The findings reveal a number of serious usability issues which prevent these products from successfully accessing an important target demographic and associated energy saving and fuel poverty outcomes. Design principles and examples are distilled from the research to enable practitioners to translate the underlying research into high quality design-engineering solutions

    Race and sex: teachers' views on who gets ahead in schools?

    Get PDF
    The research reported here was part of a large study of the impact of age, disability, race and sex on the teaching profession in England. The basic question asked in this research was how do these factors interact with career aspirations and achievements of classteachers, promoted teachers and headteachers? There were three different data sources: a large postal survey drawn from diverse geographic regions across England with over 2000 respondents; faceā€toā€face individual interviews with over 100 teachers in 18 case study schools from across all of the main regions of England; discussions with special interest groups of teachers. Not surprisingly, the answer to the above question was complex. Nonetheless, the paper's conclusion highlights some of the noteworthy themes across this broad sample of teachers from primary, secondary and special schools

    Habitat use affects morphological diversification in dragon lizards

    Get PDF
    Habitat use may lead to variation in diversity among evolutionary lineages because habitats differ in the variety of ways they allow for species to make a living. Here, we show that structural habitats contribute to differential diversification of limb and body form in dragon lizards (Agamidae). Based on phylogenetic analysis and ancestral state reconstructions for 90 species, we find that multiple lineages have independently adopted each of four habitat use types: rock-dwelling, terrestriality, semi-arboreality and arboreality. Given these reconstructions, we fit models of evolution to speciesā€™ morphological trait values and find that rock-dwelling and arboreality limit diversification relative to terrestriality and semi-arboreality. Models preferred by Akaike information criterion infer slower rates of size and shape evolution in lineages inferred to occupy rocks and trees, and model-averaged rate estimates are slowest for these habitat types. These results suggest that ground-dwelling facilitates ecomorphological differentiation and that use of trees or rocks impedes diversification

    Crop Updates 2002 - Weeds

    Get PDF
    This session covers fifty eight papers from different authors: 1. INTRODUCTION Vanessa Stewart, DEPARTMENT OF AGRICULTURE INTEGRATED WEED MANAGEMENT IWM system studies / demonstration sites 2. Major outcomes from IWM demonstration sites, Alexandra Douglas Department of Agriculture 3. Integrated weed management: Katanning, Alexandra Douglas Department of Agriculture 4. Integrated weed management: Merredin, Vanessa Stewart Department of Agriculture 5. Long term resistance site: Get ryegrass numbers low and keep them low! Peter Newman and Glen Adams Department of Agriculture 6. Using pastures to manage ryegrass populations, Andrew Blake and Natalie Lauritsen Department of Agriculture Weed biology and competition 7. Understanding the weed seed bank life if important agricultural weeds, Sally Peltzer and Paul Matson Department of Agriculture 8. Consequence of radish competition on lupin nutrients in wheat-lupin rotation, Abul Hashem and Nerys Wilkins Department of Agriculture 9. Consequence of ryegrass competition on lupin nutrients in a wheat-lupin rotation, Abul Hashem and Nerys Wilkins Department of Agriculture 10. Brome grass too competitive for early sown wheat in a dry year at Mullewa, Peter Newman and Glenn Adam Department of Agriculture Crop establishment and weed management 11. Seeding rate, row spacing and herbicides for weed control, David Minkey Department of Agriculture 12. Effect of different seeding methods on wheat and ryegrass, Abul Hashem, Glen Riethmuller and Nerys Wilkins Department of Agriculture 13. Role of tillage implements and trifluralin on the effectiveness of the autumn tickle for stimulating annual ryegrass emergence, Tim Cusack1, Kathryn Steadman1 and Abul Hashem2,1Western Australia Herbicide Resistance Initiative, UWA; 2Department of Agriculture, 14. Timing of autumn tickle in important for non-wetting soils, Pippa Michael1, Peter Newman2 and Kathryn Steadman 2, 1Western Australia Herbicide Resistance Initiative, UWA, 2Department of Agriculture 15. Early investigation into weed seed burial by mouldboard plough, Sally Peltzer and Alex Douglas Department of Agriculture 16. Rolling post-emergent lupins to improve weed emergence and control on loamy sand, Paul Blackwell, Department of Agriculture and Dave Brindal, Strawberry via Mingenew IWM tools 17. Crop topping in 2001: How did we do? Peter Newman and Glenn Adam Department of Agriculture 18. Wickwipers work! Peter Newman and Glenn Adam Department of Agriculture 19. Wild radish and ryegrass seed collection at harvest: Chaff carts and other devices, Michael Walsh Western Australia Herbicide Resistance Initiative, UWA and Wayne Parker Department of Agriculture 20. Improving weed control in grazed pastures using legumes with low palatability, Clinton Revell, Giles Glasson Department of Agriculture, and Dean Thomas Faculty of Agriculture, University of Western Australia Adoption and modelling 21. Grower weed survey, Peter Newman and Glenn Adam Department of Agriculture 22. Agronomist survey, Peter Newman and Glenn Adam Department of Agriculture 23. Ryegrass RIM model stands the test of IWM field trial data, Alister Draper Western Australia Herbicide Resistance Initiative, UWA and Bill Roy, Western Australia Herbicide Resistance Initiative, UWA Agricultural Consulting and Research Services 24. Multi-species RIM: An update, Marta Monjardin1,2, David Pannell2 and Stephen Powles 1, 1Western Australia Herbicide Resistance Initiative, UWA, 2 ARE, University of Western Australia 25. RIM survey feedback, Robert Barrett-Lennard and Alister Draper Western Australia Herbicide Resistance Initiative, UWA 26. Effect of historic input and product prices on choice of ryegrass management strategies, Alister Draper1 and Martin Bent2, 1Western Australia Herbicide Resistance Initiative, UWA, 2Muresk Institute of Agriculture 27. Living with ryegrass ā€“ trading off weed control and economic performance, Martin Bent1 and Alister Draper2 , 1Muresk Institute of Agriculture, Curtin University, 2Western Australia Herbicide Resistance Initiative, UWA HERBICIDE RESISTANCE 28. Glyphosate resistance in WA and Australia: Where are we at? Paul Neve1, Art Diggle2, Patrick Smith3, Mechelle Owen1, Abul Hashem2, Christopher Preston4and Stephen Powles1,1Western Australian Herbicide Resistance Initiative, University of Western Australia, 2Department of Agriculture, 3CSIRO Sustainable Ecosystems, 4CRC for Australian Weed Management and Department of Applied and Molecular Ecology, Waite Campus, University of Adelaide 29. We need you weeds: A survey of knockdown resistance in the WA wheatbelt, Paul Neve1, Mechelle Owen1, Abul Hashem2 and Stephen Powles1 1Western Australian Herbicide Resistance Initiative, University of Western Australia, 2Department of Agriculture 30. A test for resistance testing, Mechelle Owen, Tracey Gillam, Rick Llewellyn and Steve Powles,Western Australia Herbicide Resistance Initiative, University of Western Australia 31. In field testing for herbicide resistance, a purpose built multi-treatment spray boom with results from 2001, Richard Quinlan, Elders Ltd 32. Advantages and limitations of a purpose built multi-treatment spray boom, Richard Quinlan, Elders Ltd 33. Group F resistant wild radish: Whatā€™s new? Aik Cheam, Siew Lee Department of Agriculture, and Mike Clarke Aventis Crop Science 34. Cross resistance of BrodalĀ® resistant wild radish to SniperĀ®, Aik Cheam and Siew Lee, Department of Agriculture 35. Managing a biotype of wild radish with Group F and Group C resistance, Aik Cheam, Siew Lee, David Nicholson, Peter Newman Department of Agriculture and Mike Clarke, Aventis Crop Science HERBICIDE TOLERANCE 36. Herbicide tolerance of new wheat varieties, Harmohinder S. Dhammu, Terry Piper and David Nicholson, Agriculture Western Australia 37. Response of barley varieties to herbicides, Harmohinder S. Dhammu, Terry Piper, Department of Agriculture 38. Tolerance of barley to phenoxy herbicides, Harmohinder S. Dhammu, Terry Piper, Department of Agriculture and Chad Sayer, Nufarm Australia Limited 39. Response of Durum wheats to herbicides, Harmohinder S. Dhammu, Terry Piper, Department of Agriculture 40. Response of new field pea varieties to herbicides, Harmohinder S. Dhammu, Terry Piper and David Nicholson, Department of Agriculture 41. Herbicide tolerance of Desi chickpeas on marginal soil, Harmohinder S. Dhammu, Terry Piper and David Nicholson, Department of Agriculture 42. Herbicide tolerance of newer lupin varieties, Terry Piper, Harmohinder Dhammu and David Nicholson, Department of Agriculture 43. Herbicide tolerance of some annual pasture legumes, Clinton Revell and Ian Rose, Department of Agriculture 44. Herbicide tolerance of pasture legumes, Andrew Blake, Department of Agriculture HERBICIDES ā€“ NEW PRODUCTS/PRODUCT USES; USE 45. Knockdown herbicides do not reliably kill small grass weeds, Peter Newman and Glenn Adam, Department of Agriculture 46. ā€˜Hair Cuttingā€™ wheat with Spray.SeedĀ®: Does it work? Peter Newman and Glenn Adam, Department of Agriculture 47. ā€˜Haircuttingā€™: Does the number one cut work? Robert Barrett-Lennard1 and Jerome Critch2,1WA Herbicide Resistance Initiative, University of WA, 2Student, University of WA 48. Hammer EC (Carfentrazone-ethyl): A mixing partner for glyphosate to enhance the control of difficult broadleaf weeds, Gordon R. Cumming, Crop Care Australasia 49. Marshmallow control in reduced tillage systems, Sam Taylor, Wesfarmers Landmark 50. Herbicide options for summer germinating marshmallow, Vanessa Stewart, Department of Agriculture 51. Dual GoldĀ® safe in a dry year at Coorow, Peter Newman and Glenn Adam, Department of Agriculture 52. The effect of glyphosate, paraquat and diquat as a crop topping application on the germination of barley, John Moore and Roslyn Jettner, Department of Agriculture 53. Herbicide options for melon control, Vanessa Stewart, Department of Agriculture 54. Herbicide options for the control of Chloris truncate (windmill grass) Vanessa Stewart, Department of Agriculture 55. Allelopathic effects of crop, pasture and weed residues on subsequent crop and pasture establishment, Stuart Bee1, Lionel Martin1, Keith Devenish2 and Terry Piper2, 1Muresk Institute of Agriculture, Curtin University of Technology, Northam, Western Australia, 2Centre for Cropping Systems, Department of Agriculture WEED ISSUES 56. Role of Roundup Readyƒ canola in the farming system, Art Diggle1, Patrick Smith2, Paul Neve3, Felicity Flugge4, Amir Abadi5 and Stephen Powles3, 1Department of Agriculture; 2CSIRO, Sustainable Ecosystems; 3Western Australian Herbicide Resistance Initiative; 4Centre for Legumes in Mediterranean Agriculture; 5Touchstone Consulting 57. ā€™Weeds for Feedā€™ and livestock enterprise structures: A feasibility study and farmer survey in the north-easern wheatbelt, Duncan Peter and Stuart McAlpine, Department of Agriculture and Liebe Group, Buntine 58. e-weed, Vanessa Stewart, Agriculture Western Australi

    Climate emergency summit III:nature-based solutions report

    Get PDF
    An RSGS & SNH report from the Climate Summit held in April 2020"The Climate Emergency is the result of burning fossils fuels and changes in the way we use the land that short-circuit global carbon and nitrogen cycles. To remain within safe climate limits (1.5-2Ā°C), the remaining carbon budget for all people, and for all time, is now so small that stopping fossil fuel use, while essential, will not by itself address the problem. Changing the way we use the land and sea is now essential. Nature-based solutions are vital to creating a safe operating space for humanity. "Extract from the foreword by Dr Clive Mitchell, Outcome Manager: People and Nature, Scottish Natural Heritage. The report has 45 contributors for a variety of institutions

    Crop Updates 2001 - Weeds

    Get PDF
    This session covers forty six papers from different authors: 1. INTRODUCTION, Vanessa Stewart, Agriculture Western Australia PLENARY 2. Wild radish ā€“ the implications for our rotations, David Bowran, Centre for Cropping Systems INTEGRATED WEED MANAGEMENT IWM system studies/demonstration sites 3. Integrated weed management: Cadoux, Alexandra Wallace, Agriculture Western Australia 4. A system approach to managing resistant ryegrass, Bill Roy, Agricultural Consulting and Research Services Pty Ltd, York 5. Long term herbicide resistance demonstration, Peter Newman, Agriculture Western Australia, Cameron Weeks, Tony Blake and Dave Nicholson 6. Integrated weed management: Katanning, Alexandra Wallace, Agriculture Western Australia 7. Integrated weed management: Merredin, Vanessa Stewart, Agriculture Western Australia 8. Short term pasture phases for weed control, Clinton Revell and Candy Hudson, Agriculture Western Australia Weed biology ā€“ implications for IWM 9. Competitivness of wild radish in a wheat-lupin rotation , Abul Hashem, Nerys Wilkins, and Terry Piper, Agriculture Western Australia 10. Population explosion and persistence of wild radish in a wheat-lupin rotation, Abul Hashem, Nerys Wilkins, Aik Cheam and Terry Piper , Agriculture Western Australia 11. Variation is seed dormancy and management of annual ryegrass, Amanda Ellery and Ross Chapman, CSIRO 12. Can we eradicate barley grass, Sally Peltzer, Agriculture Western Australia Adoption and modelling 13. Where to with RIM? Vanessa Stewart1 and Robert Barrett-Lennard2, 1Agriculture Western Australia, 2Western Australian Herbicide Resistance Initiative (WAHRI) 14. Multi-species RIM model, Marta Monjardino1,2, David Pannell2 and Stephen Powles1 1Western Australian Herbicide Resistance Initiative (WAHRI), 2ARE, University of Western Australia 15. What causes WA grain growers to adopt IWM practices? Rick Llewellyn, WAHRI/ARE, Faculty of Agriculture, University of WA New options for IWM? 16. Fuzzy tramlines for more yield and less weeds, Paul Blackwell Agriculture Western Australia, and Maurice Black, Harbour Lights Estate, Geraldton 17. Inter-row knockdowns for profitable lupins, Paul Blackwell, Agriculture Western Australia and Miles Obst, Farmer Mingenew 18. Row cropping and weed control in lupins, Mike Collins and Julie Roche, Agriculture Western Australia 19. Cross seedimg suppresses annual ryegrass and increases wheat yield, Abul Hashem, Dave Nicholson and Nerys Wilkins Agriculture Western Australia 20. Weed control by chaff burial, Mike Collins, Agriculture Western Australia HERBICIDE RESISTANCE 21. Resistance in wild oats to Fop and Dim herbicides in Western Australia, Abul Hashem and Harmohinder Dhammu, Agriculture Western Australia 22. Triazine and diflufenican resistance in wild radish: what it means to the lupin industry, Aik Cheam, Siew Lee, David Nicholson and Peter Newman, Agriculture Western Australia 23. Comparison if in situ v seed testing for determining herbicide resistance, Bill Roy, Agricultural Consulting and Research Services Pty Ltd, York HERBICIDE TOLERANCE 24. Phenoxy herbicide tolerance of wheat, Peter Newman and Dave Nicholson, Agriculture Western Australia 25. Tolerance of wheat to phenoxy herbicides, Harmohinder S. Dhammu, Terry Piper and Mario F. D\u27Antuono, Agriculture Western Australia 26. Herbicide tolerance of new wheats, Harmohinder S. Dhammu, Terry Piper and David F. Nicholson, Agriculture Western Australia 27. Herbicide tolerance of durum wheats, Harmohinder S. Dhammu, Terry Piper and David F. Nicholson, Agriculture Western Australia 28. Herbicide tolerance of new field pea varieties, Harmohinder S. Dhammu, Terry Piper, David F. Nicholson, and Mario F. D\u27Antuono, Agriculture Western Australia 29. Herbicide tolerance of Cooke field peas on marginal soil, Harmohinder S. Dhammu, Terry Piper, David F. Nicholson, and Mario F. D\u27Antuono, Agriculture Western Australia 30. Herbicide tolerance of some annual pasture legumes adapted to coarse textured sandy soils, Clinton Revell and Ian Rose, Agriculture Western Australia 31 Herbicide tolerance of some annual pasture legumes adapted to fine textured clay soils, Clinton Revell and Ian Rose, Agriculture Western Australia WEED CONTROL IN LUCERNE 32. Management of weeds for Lucerne establishment, Diana Fedorenko, Clayton Butterly, Stuart McAlpine, Terry Piper and David Bowran, Centre for Cropping Systems, Agriculture Western Australia 33. Management of weeds in the second year of Lucerne, Diana Fedorenko, Clayton Butterly, Stuart McAlpine, Terry Piper and David Bowran, Centre for Cropping Systems, Agriculture Western Australia 34. Residual effects of weed management in the third year of Lucerne, Diana Fedorenko, Clayton Butterly, Stuart McAlpine, Terry Piper and David Bowran, Centre for Cropping Systems, Agriculture Western Australia 35. Herbicide tolerance and weed control in Lucerne, Peter Newman, Dave Nicholson and Keith Devenish Agriculture Western Australia HERBICIDES ā€“ NEW PRODUCTS/PRODUCE USES; USE New products or product use 36. New herbicide options for canola, John Moore and Paul Matson, Agriculture Western Australia 37. Chemical broadleaf weed management in Peaola, Shannon Barraclough and Lionel Martin, Muresk Institute of Agriculture, Curtin University of Technology 38. BalanceĀ® - a new broad leaf herbicide for the chickpea industry, Mike Clarke, Jonas Hodgson and Lawrence Price, Aventis CropScience 39. Marshmallow ā€“ robust herbicide strategies, Craig Brown, IAMA Agribusiness 40. Affinity DF ā€“ a prospective option for selective in-crop marshmallow control, Gordon Cumming, Technical Officer, Crop Care Australasia 41. A new formulation of Carfentrazone-ethyl for pre-seeding knockdown control of broadleaved weeds including Marshmallow, Gordon Cumming, Technical Officer, Crop Care Australasia Herbicide use 42. Autumn applied trifluralin can be effective! Bill Crabtree, Scientific Officer, Western Australian No-Tillage Farmers Association 43. Which knockdown herbicide for small ryegrass? Peter Newman and Dave Nicholson, Agriculture Western Australia 44. Poor radish control with Group D herbicides in lupins, Peter Newman and Dave Nicholson, Agriculture Western Australia WEED ISSUES 45. Distribution and incidence of aphids and barley yellow dwarf virus in over-summering grasses in the WA wheatbelt, Jenny Hawkes and Roger Jones, CLIMA and Agriculture Western Australia 46. e-weed, Vanessa Stewart, Agriculture Western Australia CONTRIBUTING AUTHOR CONTACT DETAIL

    Crop Updates 2002 - Farming Systems

    Get PDF
    This session covers forty one papers from different authors: INTRODUCTION 1. Future Farming Systems session for Crop Updates 2002 Peter Metcalf, FARMING SYSTEMS SUBPROGRAM MANAGER GRAINS PROGRAM Department of Agriculture 2. Perennial pastures in annual cropping systems: Lucerne and beyond, the ā€˜Big Pictureā€™, Mike Ewing, Deputy CEO CRC for Plant-based Management of Dryland Salinity, Department of Agriculture 3. Perennial pastures in annual cropping systems: lucerne and beyond, Roy Latta and Keith Devenish, Department of Agriculture 4. Establishing Lucerne with a cover crop, Diana Fedorenko1, Clayton Butterly1, Chantelle Butterly1, Kim and Neil Diamond2, Stuart McAlpine2, Bill Bowden1, Jessica Johns3, 1Centre for Cropping Systems, Northam, 2Farmer, Buntine, 3Department of Agriculture 5. Overcropping: Chemical suppression of Lucerne, Terry Piper1, Diana Fedorenko1, Clayton Butterly1, Chantelle Butterly1, Stuart McAlpine2, Jessica Johns3, 1Centre for Cropping Systems, Northam, 2Farmer, Buntine, 3Department of Agriculture 6. Overcropping: Effect of Lucerne density on crop yield, Diana Fedorenko1, Bill Bowden1, Clayton Butterly1, Chantelle Butterly1, Stuart McAlpine2, Terry Piper1,1Centre for Cropping Systems, Department of Agriculture, Northam, 2Farmer, Buntine 7. Residual effect of weed management in the third year of Lucerne on the following wheat crop, Diana Fedorenko1, Clayton Butterly1, Chantelle Butterly1, Stuart McAlpine2,Terry Piper1, David Bowran1, Jessica Johns3,1Centre for Cropping Systems, Northam, 2Farmer, Buntine, 3Department of Agriculture 8. Production of Lucerne and serradella in four soil types, Diana Fedorenko1 Clayton Butterly1, Chantelle Butterly1, Robert Beard2 1Centre for Cropping Systems, Department of Agriculture, 2Farmer, Cunderdin 9. The effect of spray topping on newly established Lucerne, Keith Devenish, Agriculture Western Australia 10. Leakage from phase rotations involving Lucerne, Phil Ward, CSIRO Plant Industry 11. Fungal diseases present in Western Australian Lucerne crops, Dominie Wright and Nichole Burges, Department of Agriculture 12. Survey of Western Australian Lucerne stands reveals widespread virus infection, Roger Jones and Danae Harman, Crop Improvement Institute, Department of Agriculture, and Centre for Legumes in Mediterranean Agriculture, University of WA ANNUAL PASTURE SYSTEMS 13. The use of Twist Fungus as a biosecurity measure against Annual Ryegrass Toxicity (ARGT), Greg Shea, GrainGuard Coordinator and George Yan, Biological and Resource Technology 14.Limitations and opportunities for increasing water use by annual crops and pastures, David Tennant1, Phil Ward2and David Hall1 1Department of Agriculture, 2CSIRO, Plant Industries, Floreat Park 15. Developing pasture species mixtures for more productive and sustainable cropping systems ā€“ 2001 crop performance, Anyou Liu, Clinton Revell and Candy Hudson, Centre for Cropping Systems, Department of Agriculture 16. Developing pasture species mixtures for more productive and sustainable cropping systems ā€“ weed management in regenerating mixtures, Anyou Liu and Clinton Revell, Centre for Cropping Systems, Department of Agriculture 17. Aphid tolerance of annual pasture legumes, Andrew Blake, Natalie Lauritsen, Department of Agriculture 18. Selecting the right variety for phase pasture systems, Keith Devenish, Department of Agriculture 19. Responses of alternative annual pasture and forage legumes to challenge with infectious subterranean clover mottle virus, John Fosu-Nyarko, Roger Jones, Lisa Smith, Mike Jones and Geoff Dwyer, State Agricultural Biotechnology Centre and Centre for Bioinformatics and Biological Computing, Murdoch University, Department of Agriculture, and Centre for Legumes in Mediterranean Agriculture SOIL AND LAND MANAGEMENT 20. Nutrition in 2002: Decisions to be made as a result of last season, Bill Bowden,Western Australia Department of Agriculture 21. Profitability of deep banding lime, Michael O\u27Connell, Chris Gazey and David Gartner, Department of Agriculture 22. Lime efficiency percentageā€¦the new measure of lime effectiveness for Western Australia, Amanda Miller, Department of Agriculture 23. Boron ā€“ should we be worried about it, Richard W. BellA, K. FrostA, Mike WongBand Ross BrennanC ASchool of Environmental Science, Murdoch University, BCSIRO Land and Water, CDepartment of Agriculture 24. Impact of claying and other amelioration on paddock profit, N.J. Blake1, G. McConnell2, D. Patabendige1and N. Venn11Department of Agriculture, 2PlanFarm P/L 25. Raised bed farming in the 2001 growing season, Derk Bakker, Greg Hamilton, Dave Houlbrooke and Cliff Spann, Department of Agriculture 26. Economics of tramline farming systems, Paul Blackwell and Bindi Webb, Department of Agriculture, Stuart McAlpine, Liebe Group. 27. Relay planting from Tramlines to increase water use and productivity os summer crops, Dr Paul Blackwell, Department of Agriculture, Neil and Kim Diamond, Buntine. Liebe Group 28.Evidence-based zone management of paddock variability to improve profits and environmental outcomes, M.T.F. WongA, D. PatabendigeB, G. LyleA and K. WittwerA ACSIRO Land and Water, BDepartment of Agriculture 29. How much soil water is lost over summer in sandy soils? Perry Dolling1, Senthold Asseng2, Ian Fillery2, Phil Ward2and Michael Robertson3 1University of Western Australia/Department of Agriculture Western Australia/CSIRO, 2CSIRO Plant Industry 3CSIRO Sustainable Ecosystems, Indooroopilly, Queensland FARMER DECISION SUPPORT AND ADOPTION 30. Economic comparisons of farming systems for the medium rainfall northern sandplain, No 1, Caroline Peek and David Rogers, Department of Agriculture 31. Sensitivity analysis of farming systems for the medium rainfall northern sandplain No 2, Caroline Peek and David Rogers, Department of Agriculture 32. Transition analysis of farming systems in the medium rainfall northern sandplain. No 3, Caroline Peek and David Rogers, Department of Agriculture 33. Implementing on-farm quality assurance, Peter Portmann, Manager Research and Development, The Grain Pool of Western Australia 34. On-farm research ā€“ principles of the ā€˜Test As You Growā€™ kit, Jeff Russell, Department of Agriculture 35. Broadscale wheat variety comparisons featuring Wyalkatchem, Jeff Russell, Department of Agriculture 36. GrainGuardƔ - A biosecurity plan for the Canola Industry,Greg Shea Department of Agriculture 37. Are Western Australian broadacre farms efficient? Ben Henderson, University of Western Australia, Ross Kingwell, Department of Agriculture and University of Western Australia DISEASE MODELLING WORKSHOP 38. WORKSHOP: Pest and disease forecasts for you! An interactive forum, Tresslyn Walmsley, Jean Galloway, Debbie Thackray, Moin Salam and Art Diggle, Centre for Legumes in Mediterranean Agriculture and Department of Agriculture 39. Blackspot spread: Disease models are based in reality (Workshop paper 1), JeanGalloway,Department of Agriculture 40. Blackspot spread: Scaling-up field data to simulate ā€˜Bakerā€™s farmā€™ (Workshop paper 2), Moin U. Salam, Jean Galloway, Art J. Diggle and William J. MacLeod, Department of Agriculture, Western Australia 41. A decision support system for control of aphids and CMV in lupin crops (Workshop paper 3), Debbie Thackray, Jenny Hawkes and Roger Jones, Centre for Legumes in Mediterranean Agriculture and Department of Agricultur

    Climatic and topographic changes since the Miocene influenced the diversification and biogeography of the tent tortoise (Psammobates tentorius) species complex in Southern Africa

    Get PDF
    Background: Climatic and topographic changes function as key drivers in shaping genetic structure and cladogenic radiation in many organisms. Southern Africa has an exceptionally diverse tortoise fauna, harbouring one-third of the worldā€™s tortoise genera. The distribution of Psammobates tentorius (Kuhl, 1820) covers two of the 25 biodiversity hotspots in the world, the Succulent Karoo and Cape Floristic Region. The highly diverged P. tentorius represents an excellent model species for exploring biogeographic and radiation patterns of reptiles in Southern Africa. Results: We investigated genetic structure and radiation patterns against temporal and spatial dimensions since the Miocene in the Psammobates tentorius species complex, using multiple types of DNA markers and niche modelling analyses. Cladogenesis in P. tentorius started in the late Miocene (11.63ā€“5.33 Ma) when populations dispersed from north to south to form two geographically isolated groups. The northern group diverged into a clade north of the Orange River (OR), followed by the splitting of the group south of the OR into a western and an interior clade. The latter divergence corresponded to the intensifcation of the cold Benguela current, which caused western aridifcation and rainfall seasonality. In the south, tectonic uplift and subsequent exhumation, together with climatic fuctuations seemed responsible for radiations among the four southern clades since the late Miocene. We found that each clade occurred in a habitat shaped by diferent climatic parameters, and that the niches difered substantially among the clades of the northern group but were similar among clades of the southern group. Conclusion: Climatic shifts, and biome and geographic changes were possibly the three major driving forces shaping cladogenesis and genetic structure in Southern African tortoise species. Our results revealed that the cladogenesis of the P. tentorius species complex was probably shaped by environmental cooling, biome shifts and topographic uplift in Southern Africa since the late Miocene. The Last Glacial Maximum (LGM) may have impacted the distribution of P. tentorius substantially. We found the taxonomic diversify of the P. tentorius species complex to be highest in the Greater Cape Floristic Region. All seven clades discovered warrant conservation attention, particularly Ptt-Bā€“Ptr, Ptt-A and Pv-
    • ā€¦
    corecore