19 research outputs found

    Arabidopsis defense against the pathogenic fungus drechslera gigantea is dependent on the integrity of the unfolded protein response

    Get PDF
    Drechslera gigantea Heald & Wolf is a worldwide-spread necrotrophic fungus closely related to the Bipolaris genus, well-known because many member species provoke severe diseases in cereal crops and studied because they produce sesterpenoid phytoxins named ophiobolins which possess interesting biological properties. The unfolded protein response (UPR) is a conserved mechanism protecting eukaryotic cells from the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER). In plants, consolidated evidence supports the role of UPR in the tolerance to abiotic stress, whereas much less information is available concerning the induction of ER stress by pathogen infection and consequent UPR elicitation as part of the defense response. In this study, the infection process of D. gigantea in Arabidopsis thaliana wild type and UPR-defective bzip28 bzip60 double mutant plants was comparatively investigated, with the aim to address the role of UPR in the expression of resistance to the fungal pathogen. The results of confocal microscopy, as well as of qRT-PCR transcript level analysis of UPR genes, proteomics, microRNAs expression profile and HPLC-based hormone analyses demonstrated that ophiobolin produced by the fungus during infection compromised ER integrity and that impairment of the IRE1 /bZIP60 pathway of UPR hampered the full expression of resistance, thereby enhancing plant susceptibility to the pathogen

    SARS-CoV-2 serological profile in healthcare professionals of a Southern Italy hospital

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the first coronavirus that has caused a pandemic. Assessing the prevalence of anti-SARS-CoV-2 in healthcare worker groups offers a unique opportunity to study the correlation between seroconversion and immunization because of their occupational exposure and a higher risk of contagion. The study enrolled 3242 asymptomatic employees of “Policlinico Riuniti”, Foggia. After the first screening, we collected sequential serum samples for up to 23 weeks from the same subjects. In order to perform a longitudinal follow-up study and get information about the titration of IgG levels, we analyzed data from subjects (33) with at least two consecutive serological IgG—positive tests; 62 (1.9%; 95% CI: 1.4–2.3) tested positive for at least one anti-SARS-CoV-2 antibody. The seroprevalence was lower in the high-risk group 1.4% (6/428; 95% CI: 0.5–2.6) vs. the intermediate-risk group 2.0% (55/2736; 95% CI: 1.5–2.5). Overall, within eight weeks, we detected a mean reduction of –17% in IgG levels. Our data suggest a reduction of about 9.27 AU/mL every week (R2 = 0.35, p = 0.0003). This study revealed the prevalence of SARS-CoV-2 antibodies among Foggia’s hospital healthcare staff (1.9%). Moreover, the IgG level reduction suggests that the serological response fades fast in asymptomatic infections

    Melleins—intriguing natural compounds

    No full text
    Melleins are 3,4-dihydroisocoumarins mainly produced by fungi, but also by plants, insects and bacteria. These specialized metabolites play important roles in the life cycles of the producers and they are involved in many biochemical and ecological processes. This review outlines the isolation and chemical and biological characterizations of natural-occurring melleins from the first report of (R)-mellein in 1933 to the most recent advances in their characterization in 2019. In addition, the pathways that could be involved in mellein biosynthesis are discussed, along with the enzymes and genes involved

    Identification of constitutive metabolites in pea responsible for antixenosis and antibiosis against Bruchus pisorum

    No full text
    Trabajo presentado en la International Conference Advances in grain legume breeding, cultivations and uses for a more competitive value-chain, celebrada en Novi Sad (Serbia) el 27 y 28 de septiembre de 2017.Pea weevils (Bruchus pisorum) is a pest of the field pea (Pisum sativum) of great economic importance. Recently, pea accessions have been reported to reduce seed infestation, and/or larval development. Pods and seeds from these accessions were collected to check constitutive metabolites able to block the egg lying on pods (seed infestation) while pea seeds to check metabolites hampering larval development. Pea pods and seeds were lyophilized in order to evaluate metabolites that may be involved in pea weevil infestation. Standard method for metabolomics analysis was carried out on lipophilic and hydrophilic metabolites extracted, then compared to find a biomarker of resistance in pea. In this communication the studies aimed to identify metabolites responsible for antixenosis and/or antibiosis in pea resistant accessions to weevils will be discussed.N

    Pimarane diterpenes: Natural source, stereochemical configuration, and biological activity

    No full text
    Plants and fungi are seemingly inexhaustible sources of interesting natural products with remarkable structural and biological diversity. One of the most important groups is the terpenes, ubiquitous natural products that are generated by 2 now well-established biosynthetic pathways: the older mevalonate and the more recently discovered 1-deoxyxylulose-5-phosphate. Among the diterpenes, the pimarane diterpenes are a very representative subgroup with several and interesting biological activities resulting from different functional group modifications. In this review, we outline the method of their structure determination, mainly spectroscopic results, their absolute configuration, and structure-activity relationships, were reported, as well as the mode of action for selected examples from plants, marine organisms, and fungi. The pimarane, isopimarane, and ent-pimarane diterpenes covered in this review have a wide range of biological activities including antimicrobial, antifungal, antiviral, phytotoxic, phytoalexin, cytotoxicity, and antispasmodic and relaxant effects

    Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo

    No full text
    Pseudomonas chlororaphis subsp. aureofaciens encompasses bacterial strains that effectively control phy-topathogenic fungi through the production of the natural antibiotics named phenazines. In this work,the involvement of phenazine production in the interaction between the biological control agent P.chlororaphis subsp. aureofaciens M71 and the fungus Seiridium cardinale, a serious cypress pathogen,was investigated.Field trials were carried out to assess the role of phenazines in the control of S. cardinale in vivo.Results showed that P. chlororaphis subsp. aureofaciens M71 and 30-84, both able to produce phenazine-1-carboxylic acid (PCA), drastically reduced the canker development incited by S. cardinale. Conversely,strain M71b, a natural gacA mutant of P. chlororaphis subsp. aureofaciens M71, showed a decrease in PCAproduction and a reduction in controlling S. cardinale. These results were enforced by the reduction ofcanker size higher than 94% registered when 6 g of pure PCA was directly applied on each cypress wound.Furthermore, PCA was detected in cypress plant tissues only when P. chlororaphis subsp. aureofaciens M71was interacting with S. cardinale for 30 days. All these data support that the biological control of S. cardinaleachieved by the application of P. chlororaphis subsp. aureofaciens M71 relies mainly on the ability of thebacterial strain to produce PCA in planta

    Diploquinones A and B, Two New Phytotoxic Tetrasubstituted 1,4-Naphthoquinones from Diplodia mutila, a Causal Agent of Grapevine Trunk Disease

    No full text
    Two new phytotoxic tetrasubstituted 1,4-naphthoquinones, named diploquinones A and B, were isolated together with vanillic acid from Diplodia mutila (DAR78993), a grapevine pathogen involved in Botryosphaeria dieback in Australia. Diploquinones A and B were characterized as 6,7-dihydroxy-2-methoxy-5-methylnaphthalene-1,4-dione and 3,5,7-trihydroxy-2-methoxynaphthalene-1,4-dione using spectroscopic methods (essentially 1D and 2D 1H and 13C NMR and HR ESIMS). The already known vanillic acid was isolated for the first time as fungal phytotoxin and as metabolite of D. mutila. The three compounds were assayed on detached grapevine leaves ( Vitis vinifera cv. Shiraz) at concentrations of 10-3 M and 2.5 Ă— 10-3 M. Vanillic acid showed the highest phytotoxic effect on grapevine leaves irrespective of the tested concentration, while diploquinones A and B showed varying degrees of toxicity

    Luteoethanones A and B, two phytotoxic 1-substituted ethanones produced by Neofusicoccum luteum, a causal agent of Botryosphaeria dieback on grapevine

    No full text
    Two new phytotoxic 1-substituted ethanones, named luteoethanones A and B, were isolated from Neofusicoccum luteum, the causal agents of Botryosphaeria dieback in Australia. Luteoethanones A and B were characterized, by spectroscopic methods (essentially 1 D and 2 D NMR and HR ESIMS), as 1-(8-Methoxy-2,4-methyl-1-oxa-4-aza-spiro[2.5]octa-5,7-dien-6-yl)-ethanone and its 2-demethyl analogue. When assayed on detached grapevine leaves (Vitis vinifera cv. Shiraz) both the compounds showed phytotoxic activity

    Phytotoxic Metabolites from Three Neofusicoccum Species Causal Agents of Botryosphaeria Dieback in Australia, Luteopyroxin, Neoanthraquinone, and Luteoxepinone, a Disubstituted Furo-α-pyrone, a Hexasubstituted Anthraquinone, and a Trisubstituted Oxepi-2-one from Neofusicoccum luteum

    No full text
    Different phytotoxic metabolites were isolated from the organic extract of Neofusicoccum luteum, Neofusicoccum australe, and Neofusicoccum parvum, causal agents of Botryosphaeria dieback in Australia. N. luteum produced a new disubstituted furo-α-pyrone, a hexasubstituted anthraquinone, and a trisubstituted oxepi-2(7H)-one, luteopyroxin (4), neoanthraquinone (5), and luteoxepinone (7), respectively, together with the known (±)-nigrosporione (6), tyrosol (8), (R)-(-)-mellein (1), and (3R,4S)-(-)- and (3R,4R)-(-)-4-hydroxymellein (2 and 3). The three melleins and tyrosol were also produced by N. parvum, while N. australe produced (R)-(-)-mellein (1), neoanthraquinone (5), tyrosol (8), and p-cresol (9). Luteopryoxin (4), neoanthraquinone (5), and luteoxepinone (7) were characterized by analyses of physical data, essentially one- and two-dimensional nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry. The relative and absolute configurations of luteopyroxin (4) were determined by nuclear Overhauser effect spectroscopy and experimental and calculated electronic circular dichroism data. When assayed on grapevine leaves, neoanthraquinone (5) showed the highest toxic effect, causing severe shriveling and withering. Luteopyroxin (4), nigrosporione (6), and luteoxepinone (7) also showed different degrees of toxicity, while p-cresol (9) displayed low phytotoxicity
    corecore