13 research outputs found

    Ballistic Protons and Microwave-induced Water Solitons in Bioenergetic Transformations

    No full text
    Abstract: Active streaming (AS) of liquid water is considered to generate and overcome pressure gradients, so as to drive cell motility and muscle contraction by hydraulic compression. This idea had led to reconstitution of cytoplasm streaming and muscle contraction by utilizing the actin-myosin ATPase system in conditions that exclude a continuous protein network. These reconstitution experiments had disproved a contractile protein mechanism and inspired a theoretical investigation of the AS hypothesis, as presented in this article. Here, a molecular quantitative model is constructed for a chemical reaction that might generate the elementary component of such AS within the pure water phase. Being guided by the laws of energy and momentum conservation and by the physical chemistry of water, a vectorial electro-mechano-chemical conversion is considered, as follows: A ballistic H + may be released from H2O-H + at a velocity of 10km/sec, carrying a kinetic energy of 0.5 proton*volt. By coherent exchange of microwave photons during 10-10 sec, the ballistic proton can induce cooperative precession of about 13300 electricallypolarized water molecule dimers, extending along 0.5 µm. The dynamic dimers rearrange along the proton path into a pile of non-radiating rings that compose a persistent rowing-lik

    Optically-Gated Self-Calibrating Nanosensors: Monitoring pH and Metabolic Activity of Living Cells

    No full text
    Quantitative detection of biological and chemical species is critical to numerous areas of medical and life sciences. In this context, information regarding pH is of central importance in multiple areas, from chemical analysis, through biomedical basic studies and medicine, to industry. Therefore, a continuous interest exists in developing new, rapid, miniature, biocompatible and highly sensitive pH sensors for minute fluid volumes. Here, we present a new paradigm in the development of optoelectrical sensing nanodevices with built-in self-calibrating capabilities. The proposed electrical devices, modified with a photoactive switchable molecular recognition layer, can be optically switched between two chemically different states, each having different chemical binding constants and as a consequence affecting the device surface potential at different extents, thus allowing the ratiometric internal calibration of the sensing event. At each point in time, the ratio of the electrical signals measured in the ground and excited states, respectively, allows for the absolute concentration measurement of the molecular species under interest, without the need for electrical calibration of individual devices. Furthermore, we applied these devices for the real-time monitoring of cellular metabolic activity, extra- and intracellularly, as a potential future tool for the performance of basic cell biology studies and high-throughput personalized medicine-oriented research, involving single cells and tissues. This new concept can be readily expanded to the sensing of additional chemical and biological species by the use of additional photoactive switchable receptors. Moreover, this newly demonstrated coupling between surface-confined photoactive molecular species and nanosensing devices could be utilized in the near future in the development of devices of higher complexity for both the simultaneous control and monitoring of chemical and biological processes with nanoscale resolution control

    Excited-State Proton Transfer and Proton Diffusion near Hydrophilic Surfaces

    No full text
    Time-resolved emission techniques were employed to study the reversible proton photoprotolytic properties of surface-attached 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) molecules to hydrophilic alumina and silica surfaces. We found that the excited-state proton transfer rate of the surface-linked HPTS molecules, in H<sub>2</sub>O and D<sub>2</sub>O, is nearly the same as of HPTS in the bulk, while the corresponding recombination rate is significantly greater. Using the diffusion-assisted proton geminate-recombination model, we found that the best fit of the time-resolved fluorescence (TRF) signal is obtained by invoking a two-dimensional diffusion space for the proton to recombine with the conjugated basic form, RO<sup>–</sup>*, of the surface-linked HPTS. However, we obtain an excellent fit by a three-dimensional diffusion space for diffusional HPTS in bulk water. These results indicate that the photoejected solvated protons are confined to the surface for long periods of time. We suggest two plausible mechanisms responsible for two-dimensional proton diffusion next to hydrophilic surfaces

    Effects of Diet-Modulated Autologous Fecal Microbiota Transplantation on Weight Regain

    No full text
    International audienceBackground & aims: We evaluated the efficacy and safety of diet-modulated autologous fecal microbiota transplantation (aFMT) for treatment of weight regain after the weight-loss phase.Methods: In the DIRECT PLUS (Dietary Intervention Randomized Controlled Trial Polyphenols-Unprocessed) weight-loss trial (May 2017 through July 2018), abdominally obese or dyslipidemic participants in Israel were randomly assigned to healthy dietary guidelines, Mediterranean diet, and green-Mediterranean diet weight-loss groups. All groups received free gym membership and physical activity guidelines. Both isocaloric Mediterranean groups consumed 28 g/d walnuts (+440 mg/d polyphenols provided). The green-Mediterranean dieters also consumed green tea (3-4 cups/d) and a Wolffia globosa (Mankai strain, 100 g/d) green shake (+800 mg/d polyphenols provided). After 6 months (weight-loss phase), 90 eligible participants (mean age, 52 years; mean weight loss, 8.3 kg) provided a fecal sample that was processed into aFMT by frozen, opaque, and odorless capsules. The participants were then randomly assigned to groups that received 100 capsules containing their own fecal microbiota or placebo until month 14. The primary outcome was regain of the lost weight over the expected weight-regain phase (months 6-14). Secondary outcomes were gastrointestinal symptoms, waist circumference, glycemic status, and changes in the gut microbiome, as measured by metagenomic sequencing and 16s ribosomal RNA. We validated the results in a parallel in vivo study of mice specifically fed with Mankai compared with control chow diet.Results: Of the 90 participants in the aFMT trial, 96% ingested at least 80 of 100 oral aFMT or placebo frozen capsules during the transplantation period. No aFMT-related adverse events or symptoms were observed. For the primary outcome, although no significant differences in weight regain were observed among the participants in the different lifestyle interventions during months 6-14 (aFMT, 30.4% vs placebo, 40.6%; P = .28), aFMT significantly attenuated weight regain in the green-Mediterranean group (aFMT, 17.1%, vs placebo, 50%; P = .02), but not in the dietary guidelines (P = .57) or Mediterranean diet (P = .64) groups (P for the interaction = .03). Accordingly, aFMT attenuated waist circumference gain (aFMT, 1.89 cm vs placebo, 5.05 cm; P = .01) and insulin rebound (aFMT, -1.46 ± 3.6 μIU/mL vs placebo, 1.64 ± 4.7 μIU/mL; P = .04) in the green-Mediterranean group but not in the dietary guidelines or Mediterranean diet (P for the interaction = .04 and .03, respectively). The green-Mediterranean diet was the only intervention to induce a significant change in microbiome composition during the weight-loss phase, and to prompt preservation of weight-loss-associated specific bacteria and microbial metabolic pathways (mainly microbial sugar transport) after the aFMT. In mice, Mankai-modulated aFMT in the weight-loss phase compared with control diet aFMT, significantly prevented weight regain and resulted in better glucose tolerance during a high-fat diet-induced regain phase (all, P < .05).Conclusions: Autologous FMT, collected during the weight-loss phase and administrated in the regain phase, might preserve weight loss and glycemic control, and is associated with specific microbiome signatures. A high-polyphenols, green plant-based or Mankai diet better optimizes the microbiome for an aFMT procedure. ClinicalTrials.gov number, NCT03020186

    Effects of diet-modulated autologous fecal microbiota transplantation on weight regain

    Get PDF
    Background & Aims We evaluated the efficacy and safety of diet-modulated autologous fecal microbiota transplantation (aFMT) for treatment of weight regain after the weight-loss phase. Methods In the DIRECT PLUS (Dietary Intervention Randomized Controlled Trial Polyphenols-Unprocessed) weight-loss trial (May 2017 through July 2018), abdominally obese or dyslipidemic participants in Israel were randomly assigned to healthy dietary guidelines, Mediterranean diet, and green-Mediterranean diet weight-loss groups. All groups received free gym membership and physical activity guidelines. Both isocaloric Mediterranean groups consumed 28 g/d walnuts (+440 mg/d polyphenols provided). The green-Mediterranean dieters also consumed green tea (3–4 cups/d) and a Wolffia globosa (Mankai strain, 100 g/d) green shake (+800 mg/d polyphenols provided). After 6 months (weight-loss phase), 90 eligible participants (mean age, 52 years; mean weight loss, 8.3 kg) provided a fecal sample that was processed into aFMT by frozen, opaque, and odorless capsules. The participants were then randomly assigned to groups that received 100 capsules containing their own fecal microbiota or placebo until month 14. The primary outcome was regain of the lost weight over the expected weight-regain phase (months 6–14). Secondary outcomes were gastrointestinal symptoms, waist circumference, glycemic status, and changes in the gut microbiome, as measured by metagenomic sequencing and 16s ribosomal RNA. We validated the results in a parallel in vivo study of mice specifically fed with Mankai compared with control chow diet. Results Of the 90 participants in the aFMT trial, 96% ingested at least 80 of 100 oral aFMT or placebo frozen capsules during the transplantation period. No aFMT-related adverse events or symptoms were observed. For the primary outcome, although no significant differences in weight regain were observed among the participants in the different lifestyle interventions during months 6–14 (aFMT, 30.4% vs placebo, 40.6%; P = .28), aFMT significantly attenuated weight regain in the green-Mediterranean group (aFMT, 17.1%, vs placebo, 50%; P = .02), but not in the dietary guidelines (P = .57) or Mediterranean diet (P = .64) groups (P for the interaction = .03). Accordingly, aFMT attenuated waist circumference gain (aFMT, 1.89 cm vs placebo, 5.05 cm; P = .01) and insulin rebound (aFMT, 1.46 ± 3.6 μIU/mL vs placebo, 1.64 ± 4.7 μIU/mL; P = .04) in the green-Mediterranean group but not in the dietary guidelines or Mediterranean diet (P for the interaction = .04 and .03, respectively). The green-Mediterranean diet was the only intervention to induce a significant change in microbiome composition during the weight-loss phase, and to prompt preservation of weight-loss–associated specific bacteria and microbial metabolic pathways (mainly microbial sugar transport) after the aFMT. In mice, Mankai-modulated aFMT in the weight-loss phase compared with control diet aFMT, significantly prevented weight regain and resulted in better glucose tolerance during a high-fat diet–induced regain phase (all, P < .05). Conclusions Autologous FMT, collected during the weight-loss phase and administrated in the regain phase, might preserve weight loss and glycemic control, and is associated with specific microbiome signatures. A high-polyphenols, green plant-based or Mankai diet better optimizes the microbiome for an aFMT procedure
    corecore