14 research outputs found

    Mutational and gene fusion analyses of primary large cell and large cell neuroendocrine lung cancer.

    Get PDF
    Large cell carcinoma with or without neuroendocrine features (LCNEC and LC, respectively) constitutes 3-9% of non-small cell lung cancer but is poorly characterized at the molecular level. Herein we analyzed 41 LC and 32 LCNEC (including 15 previously reported cases) tumors using massive parallel sequencing for mutations in 26 cancer-related genes and gene fusions in ALK, RET, and ROS1. LC patients were additionally subdivided into three immunohistochemistry groups based on positive expression of TTF-1/Napsin A (adenocarcinoma-like, n = 24; 59%), CK5/P40 (squamous-like, n = 5; 12%), or no marker expression (marker-negative, n = 12; 29%). Most common alterations were TP53 (83%), KRAS (22%), MET (12%) mutations in LCs, and TP53 (88%), STK11 (16%), and PTEN (13%) mutations in LCNECs. In general, LCs showed more oncogene mutations compared to LCNECs. Immunomarker stratification of LC revealed oncogene mutations in 63% of adenocarcinoma-like cases, but only in 17% of marker-negative cases. Moreover, marker-negative LCs were associated with inferior overall survival compared with adenocarcinoma-like tumors (p = 0.007). No ALK, RET or ROS1 fusions were detected in LCs or LCNECs. Together, our molecular analyses support that LC and LCNEC tumors follow different tumorigenic paths and that LC may be stratified into molecular subgroups with potential implications for diagnosis, prognostics, and therapy decisions

    Process evaluation of the Bridging the Age Gap in Breast Cancer decision support intervention cluster randomized trial [abstract only]

    Get PDF
    Aims/Objectives: Shared decision making on the choice of treatment for older women with breast cancer involves many factors. Comprehensive geriatric assessment (CGA) is recognised to have a role in older patients with cancer, but how this should be utilised is still debatable. A pilot study involving older women newly diagnosed with early operable primary breast cancer was conducted aiming to explore the potential value of CGA. Methods: Decision of primary treatment followed consultation with the clinical team and was not guided by any aspect of this study. CGA, using a validated cancer-specific tool from our collaborator, A Hurria, was conducted within 6 weeks after diagnosis, regardless of date of surgery/first treatment. A total of 178 female patients aged ≥70 years with a new diagnosis of early (stage 1 or 2; cT0-2, N0-1, M0) operable primary breast cancer proven histologically, were thus far recruited from three UK centres. Results: Among these 178 patients, 149 underwent primary surgery and 29 received non-surgical treatment (primary endocrine therapy (N=28) or radiotherapy (N=1)). CGA determined that increasing age (p=0.006), reduced independence with activities of daily living (ADLs) (p=0.001) and independent activities of daily living (IADLS) (p=0.001), increased number and severity of comorbidity (p=0.043), reduced Karnofsky performance status when rated both by the patient (p=0.001) and physician (p=0.003), were significantly related to non-surgical treatment within 6 weeks after diagnosis. Other CGA parameters measured which were not significant include number of daily medications, level of social support, level of social activity, cognition, number of falls, 'Timed up and go' score. Conclusions: The pilot study has confirmed that CGA may have value in assessing this cohort of patients. Generally, it appears that patients receiving non-surgical treatment are more frail than their counterparts undergoing surgery. The study is ongoing and has expanded to include an international centre

    Comprehensive molecular comparison of BRCA1 hypermethylated and BRCA1 mutated triple negative breast cancers

    Get PDF
    Funder: The Governmental Funding for Young Clinical Researchers within the National Health Service (ALF) 2017-2019Funder: Shamik Mitra is financially supported by the funding received from the European Community’s Horizon 2020 Framework Program for Research and Innovation (H2020-MSCA-ITN-2014) under Grant Agreement no. 247634Funder: Vetenskapsrådet (Swedish Research Council); doi: https://doi.org/10.13039/501100004359Funder: The Governmental Funding within the National Health Service (ALF)Funder: - The Governmental Funding of Clinical Research within the National Health Service (ALF), grant nbr 2018/40612 - The Gustav V:s Jubilee Foundation (174271 and 187041) - The research foundation at Department of Oncology in LundAbstract: Homologous recombination deficiency (HRD) is a defining characteristic in BRCA-deficient breast tumors caused by genetic or epigenetic alterations in key pathway genes. We investigated the frequency of BRCA1 promoter hypermethylation in 237 triple-negative breast cancers (TNBCs) from a population-based study using reported whole genome and RNA sequencing data, complemented with analyses of genetic, epigenetic, transcriptomic and immune infiltration phenotypes. We demonstrate that BRCA1 promoter hypermethylation is twice as frequent as BRCA1 pathogenic variants in early-stage TNBC and that hypermethylated and mutated cases have similarly improved prognosis after adjuvant chemotherapy. BRCA1 hypermethylation confers an HRD, immune cell type, genome-wide DNA methylation, and transcriptional phenotype similar to TNBC tumors with BRCA1-inactivating variants, and it can be observed in matched peripheral blood of patients with tumor hypermethylation. Hypermethylation may be an early event in tumor development that progress along a common pathway with BRCA1-mutated disease, representing a promising DNA-based biomarker for early-stage TNBC

    Gene Expression Profiling of Large Cell Lung Cancer Links Transcriptional Phenotypes to the New Histological WHO 2015 Classification

    No full text
    Introduction: Large cell lung cancer (LCLC) and large cell neuroendocrine carcinoma (LCNEC) constitute a small proportion of NSCLC. The WHO 2015 classification guidelines changed the definition of the debated histological subtype LCLC to be based on immunomarkers for adenocarcinoma and squamous cancer. We sought to determine whether these new guidelines also translate into the transcriptional landscape of lung cancer, and LCLC specifically. Methods: Gene expression profiling was performed by using Illumina V4 HT12 microarrays (Illumina, San Diego, CA) on samples from 159 cases (comprising all histological subtypes, including 10 classified as LCLC WHO 2015 and 14 classified as LCNEC according to the WHO 2015 guidelines), with complimentary mutational and immunohistochemical data. Derived transcriptional phenotypes were validated in 199 independent tumors, including six WHO 2015 LCLCs and five LCNECs. Results: Unsupervised analysis of gene expression data identified a phenotype comprising 90% of WHO 2015 LCLC tumors, with characteristics of poorly differentiated proliferatiVe cancer, a 90% tumor protein p53 gene (TP53) mutation rate, and lack of well-known NSCLC oncogene driver alterations. Validation in independent data confirmed aggregation of WHO 2015 LCLCs in the specific phenotype. For LCNEC tumors, the unsupervised gene expression analysis suggested two different transcriptional patterns corresponding to a proposed genetic division of LCNEC tumors into SCLC-like and NSCLC-like cancer on the basis of TP53 and retinoblastoma 1 gene (RB1) alteration patterns. Conclusions: Refined classification of LCLC has implications for diagnosis, prognostics, and therapy decisions. Our molecular analyses support the WHO 2015 classification of LCLC and LCNEC tumors, which herein follow different tumorigenic paths and can accordingly be stratified into different transcriptional subgroups, thus linking diagnostic immunohistochemical staining driven classification with the transcriptional landscape of lung cancer

    Clinical framework for next generation sequencing based analysis of treatment predictive mutations and multiplexed gene fusion detection in non-small cell lung cancer

    No full text
    Precision medicine requires accurate multi-gene clinical diagnostics. We describe the implementation of an Illumina TruSight Tumor (TST) clinical NGS diagnostic framework and parallel validation of a NanoString RNA-based ALK, RET, and ROS1 gene fusion assay for combined analysis of treatment predictive alterations in non-small cell lung cancer (NSCLC) in a regional healthcare region of Sweden (Scandinavia). The TST panel was clinically validated in 81 tumors (99% hotspot mutation concordance), after which 533 consecutive NSCLCs were collected during one-year of routine clinical analysis in the healthcare region (~90% advanced stage patients). The NanoString assay was evaluated in 169 of 533 cases. In the 533-sample cohort 79% had 1-2 variants, 12% >2 variants and 9% no detected variants. Ten gene fusions (five ALK, three RET, two ROS1) were detected in 135 successfully analyzed cases (80% analysis success rate). No ALK or ROS1 FISH fusion positive case was missed by the NanoString assay. Stratification of the 533-sample cohort based on actionable alterations in 11 oncogenes revealed that 66% of adenocarcinomas, 13% of squamous carcinoma (SqCC) and 56% of NSCLC not otherwise specified harbored ≥1 alteration. In adenocarcinoma, 10.6% of patients (50.3% if including KRAS) could potentially be eligible for emerging therapeutics, in addition to the 15.3% of patients eligible for standard EGFR or ALK inhibitors. For squamous carcinoma corresponding proportions were 4.4% (11.1% with KRAS) vs 2.2%. In conclusion, multiplexed NGS and gene fusion analyses are feasible in NSCLC for clinical diagnostics, identifying notable proportions of patients potentially eligible for emerging molecular therapeutics

    The Sweden Cancerome Analysis Network - Breast (SCAN-B) Initiative: a large-scale multicenter infrastructure towards implementation of breast cancer genomic analyses in the clinical routine.

    Get PDF
    Breast cancer exhibits significant molecular, pathological, and clinical heterogeneity. Current clinicopathological evaluation is imperfect for predicting outcome, which results in overtreatment for many patients, and for others, leads to death from recurrent disease. Therefore, additional criteria are needed to better personalize care and maximize treatment effectiveness and survival

    Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study

    No full text
    Whole-genome sequencing (WGS) brings comprehensive insights to cancer genome interpretation. To explore the clinical value of WGS, we sequenced 254 triple-negative breast cancers (TNBCs) for which associated treatment and outcome data were collected between 2010 and 2015 via the population-based Sweden Cancerome Analysis Network-Breast (SCAN-B) project (ClinicalTrials.gov ID:NCT02306096). Applying the HRDetect mutational-signature-based algorithm to classify tumors, 59% were predicted to have homologous-recombination-repair deficiency (HRDetect-high): 67% explained by germline/somatic mutations of BRCA1/BRCA2, BRCA1 promoter hypermethylation, RAD51C hypermethylation or biallelic loss of PALB2. A novel mechanism of BRCA1 abrogation was discovered via germline SINE-VNTR-Alu retrotransposition. HRDetect provided independent prognostic information, with HRDetect-high patients having better outcome on adjuvant chemotherapy for invasive disease-free survival (hazard ratio (HR) = 0.42; 95% confidence interval (CI) = 0.2-0.87) and distant relapse-free interval (HR = 0.31, CI = 0.13-0.76) compared to HRDetect-low, regardless of whether a genetic/epigenetic cause was identified. HRDetect-intermediate, some possessing potentially targetable biological abnormalities, had the poorest outcomes. HRDetect-low cancers also had inadequate outcomes: ~4.7% were mismatch-repair-deficient (another targetable defect, not typically sought) and they were enriched for (but not restricted to) PIK3CA/AKT1 pathway abnormalities. New treatment options need to be considered for now-discernible HRDetect-intermediate and HRDetect-low categories. This population-based study advocates for WGS of TNBC to better inform trial stratification and improve clinical decision-making
    corecore