7,270 research outputs found

    Effect of surface nanostructure on temperature programmed reaction spectroscopy: First-principles kinetic Monte Carlo simulations of CO oxidation at RuO2(110)

    Get PDF
    Using the catalytic CO oxidation at RuO2(110) as a showcase, we employ first-principles kinetic Monte Carlo simulations to illustrate the intricate effects on temperature programmed reaction spectroscopy data brought about by the mere correlations between the locations of the active sites at a nanostructured surface. Even in the absence of lateral interactions, this nanostructure alone can cause inhomogeneities that cannot be grasped by prevalent mean-field data analysis procedures, which thus lead to wrong conclusions on the reactivity of the different surface species.Comment: 4 pages including 3 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Non-Adiabatic Vibrational Damping of Molecular Adsorbates: Insights into Electronic Friction and the Role of Electronic Coherence

    Get PDF
    We present a perturbation approach rooted in time-dependent density-functional theory to calculate electron hole (eh)-pair excitation spectra during the non-adiabatic vibrational damping of adsorbates on metal surfaces. Our analysis for the benchmark systems CO on Cu(100) and Pt(111) elucidates the surprisingly strong influence of rather short electronic coherence times. We demonstrate how in the limit of short electronic coherence times, as implicitly assumed in prevalent quantum nuclear theories for the vibrational lifetimes as well as electronic friction, band structure effects are washed out. Our results suggest that more accurate lifetime or chemicurrent-like experimental measurements could characterize the electronic coherence.Comment: Article as accepted for publication in Physical Review Letter

    First-principles statistical mechanics study of the stability of a sub-nanometer thin surface oxide in reactive environments: CO oxidation at Pd(100)

    Get PDF
    We employ a multiscale modeling approach to study the surface structure and composition of a Pd(100) model catalyst in reactive environments. Under gas phase conditions representative of technological CO oxidation (~1 atm, 300-600 K) we find the system on the verge of either stabilizing sub-nanometer thin oxide structures or CO adlayers at the surface. Under steady-state operation this suggests the presence or continuous formation and reduction of oxidic patches at the surface, which could be key to understand the observable catalytic function.Comment: 4 pages including 2 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    A General Effective Theory for Dense Quark Matter

    Full text link
    A general effective action for quark matter at nonzero temperature and/or nonzero density is derived. Irrelevant quark modes are distinguished from relevant quark modes, and hard from soft gluon modes, by introducing two separate cut-offs in momentum space, one for quarks, Λq\Lambda_q, and one for gluons, Λg\Lambda_g. Irrelevant quark modes and hard gluon modes are then exactly integrated out in the functional integral representation of the QCD partition function. Depending on the specific choice for Λq\Lambda_q and Λg\Lambda_g, the resulting effective action contains well-known effective actions for hot and/or dense quark matter, for instance the ``Hard Thermal Loop'' (HTL) or the ``Hard Dense Loop'' (HDL) action, as well as the high-density effective theory proposed by Hong and others.Comment: 10 pages, 6 figures, contribution to proceedings of SEWM 200

    Ionic conductivity and relaxation dynamics in plastic-crystals with nearly globular molecules

    Full text link
    We have performed a dielectric investigation of the ionic charge transport and the relaxation dynamics in plastic-crystalline 1-cyano-adamantane (CNA) and in two mixtures of CNA with the related plastic crystals adamantane or 2-adamantanon. Ionic charge carriers were provided by adding 1% of Li salt. The molecules of these compounds have nearly globular shape and, thus, the so-called revolving-door mechanism assumed to promote ionic charge transport via molecular reorientations in other PC electrolytes, should not be active here. Indeed, a comparison of the dc resistivity and the reorientational alpha-relaxation times in the investigated PCs, reveals complete decoupling of both dynamics. Similar to other PCs, we find a significant mixing-induced enhancement of the ionic conductivity. Finally, these solid-state electrolytes reveal a second relaxation process, slower than the alpha-relaxation, which is related to ionic hopping. Due to the mentioned decoupling, it can be unequivocally detected and is not superimposed by the reorientational contributions as found for most other ionic conductors.Comment: 9 pages, 7 figure

    CO oxidation on Pd(100) at technologically relevant pressure conditions: A first-principles kinetic Monte Carlo study

    Full text link
    The possible importance of oxide formation for the catalytic activity of transition metals in heterogenous oxidation catalysis has evoked a lively discussion over the recent years. On the more noble transition metals (like Pd, Pt or Ag) the low stability of the common bulk oxides suggests primarily sub-nanometer thin oxide films, so-called surface oxides, as potential candidates that may be stabilized under gas phase conditions representative of technological oxidation catalysis. We address this issue for the Pd(100) model catalyst surface with first-principles kinetic Monte Carlo (kMC) simulations that assess the stability of the well-characterized (sqrt{5} x sqrt{5})R27 surface oxide during steady-state CO oxidation. Our results show that at ambient pressure conditions the surface oxide is stabilized at the surface up to CO:O2 partial pressure ratios just around the catalytically most relevant stoichiometric feeds (p(CO):p(O2) = 2:1). The precise value depends sensitively on temperature, so that both local pressure and temperature fluctuations may induce a continuous formation and decomposition of oxidic phases during steady-state operation under ambient stoichiometric conditions.Comment: 13 pages including 5 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Blue-fluorescence of NADPH as an indicator of marine primary production

    No full text
    Nicotinamide Adenine Dinucleotide Phosphate (NADPH) is the primary product of photosynthesisand can therefore serve as an indicator of biomass and photosynthetic activity. Pure NADPH whichis the reduced form of NADP shows an absorption maximum at 340 nm and a maximum of emissionat 460 nm. NADPH concentrations in terrestrial vegetation have already been studied since1957 in great detail with optical methods. However, its potential as a biomass parameter of oceanicphytoplankton which can be assessed in situ and remotely with fluorescence spectroscopy has notyet been investigated.In this paper, we report on laboratory investigations of the blue-fluorescence spectrum in algalsuspensions of Chlorella and Thalassiosira when excited with UV-A light. It is shown that cell densitiesof about 106 per litre as they are typically found under natural conditions are too low for precisedetection of NADPH fluorescence, while concentrated samples with 108-1010 cells per litre exhibitsignificant blue-fluorescence which can be related to NADPH. Inhibition of photosynthetic activityby addition of DCMU decreases the strength of blue-fluorescence remarkably. Since NADPHis an end product of photosynthesis, changes of PAR illumination levels should directly affect itsconcentration and hence the intensity of blue-fluorescence. However, no effect of illumination onblue-fluorescence could be observed in our study. Possible reasons of these observations are discussed,and perspectives for practical applications of the method used are proposed

    The role of Background Independence for Asymptotic Safety in Quantum Einstein Gravity

    Full text link
    We discuss various basic conceptual issues related to coarse graining flows in quantum gravity. In particular the requirement of background independence is shown to lead to renormalization group (RG) flows which are significantly different from their analogs on a rigid background spacetime. The importance of these findings for the asymptotic safety approach to Quantum Einstein Gravity (QEG) is demonstrated in a simplified setting where only the conformal factor is quantized. We identify background independence as a (the ?) key prerequisite for the existence of a non-Gaussian RG fixed point and the renormalizability of QEG.Comment: 2 figures. Talk given by M.R. at the WE-Heraeus-Seminar "Quantum Gravity: Challenges and Perspectives", Bad Honnef, April 14-16, 2008; to appear in General Relativity and Gravitatio

    Electronic friction-based vibrational lifetimes of molecular adsorbates: Beyond the independent atom approximation

    Get PDF
    We assess the accuracy of vibrational damping rates of diatomic adsorbates on metal surfaces as calculated within the local-density friction approximation (LDFA). An atoms-in-molecules (AIM) type charge partitioning scheme accounts for intra-molecular contributions and overcomes the systematic underestimation of the non-adiabatic losses obtained within the prevalent independent atom approximation. The quantitative agreement obtained with theoretical and experimental benchmark data suggests the LDFA-AIM as an efficient and reliable approach to account for electronic dissipation in ab initio molecular dynamics simulations of surface chemical reactions.Comment: 5 pages including 2 figure
    • …
    corecore