19 research outputs found

    Effect of temperature anisotropy on the dynamics of geodesic acoustic modes

    Full text link
    In this work, we revisit the linear gyro-kinetic theory of geodesic acoustic modes (GAMs) and derive a general dispersion relation for an arbitrary equilibrium distribution function of ions. A bi-Maxwellian distribution of ions is then used to study the effects of ion temperature anisotropy on GAM frequency and growth rate. We find that ion temperature anisotropy yields sensible modifications to both the GAM frequency and growth rate as both tend to increase with anisotropy and these results are strongly affected by the electron to ion temperature ratio

    Nonlinear interaction of Alfv\'enic instabilities and turbulence via the modification of the equilibrium profiles

    Full text link
    Nonlinear simulations of Alfv\'en modes (AM) driven by energetic particles (EP) in the presence of turbulence are performed with the gyrokinetic particle-in-cell code ORB5. The AMs carry a heat flux, and consequently they nonlinearly modify the plasma temperature profiles. The isolated effect of this modification on the dynamics of turbulence is studied, by means of electrostatic simulations. We find that turbulence is reduced when the profiles relaxed by the AM are used, with respect to the simulation where the unperturbed profiles are used. This is an example of indirect interaction of EPs and turbulence. First, an analytic magnetic equilibrium with circular concentric flux surfaces is considered as a simplified example for this study. Then, an application to an experimentally relevant case of ASDEX Upgrade is discussed

    Numerical tools for burning plasmas

    Get PDF
    The software stack under development within a European coordinated effort on tools for burning plasma modelling is presented. The project is organised as a Task (TSVV Task 10) under the new E-TASC initiative (Litaudon et al 2022 Plasma Phys. Control. Fusion 64 034005). This is a continued effort within the EUROfusion inheriting from the earlier European coordination projects as well as research projects based at various European laboratories. The ongoing work of the TSVV Tasks is supported by the Advanced Computing Hubs. Major projects requiring the high performance computing (HPC) resources are global gyrokinetic codes and global hybrid particle-magnetohydrodynamics (MHD) codes. Also applications using the integrated modelling tools, such as the Energetic-Particle Workflow, based on the ITER Integrated Modelling & Analysis Suite (IMAS), or the code package for modelling radio-frequency heating and fast-ion generation may require intensive computation and a substantial memory footprint. The continual development of these codes both on the physics side and on the HPC side allows us to tackle frontier problems, such as the interaction of turbulence with MHD-type modes in the presence of fast particles. One of the important mandated outcomes of the E-TASC project is the IMAS-enabling of EUROfusion codes and release of the software stack to the EUROfusion community

    Gyrokinetic modeling of anisotropic energetic particle driven instabilities in tokamak plasmas

    No full text
    Energetic particles produced by neutral beams are observed to excite energetic-particle-driven geodesic acoustic modes (EGAMs) in tokamaks. We study the effects of anisotropy of distribution function of the energetic particles on the excitation of such instabilities with ORB5, a gyrokinetic particle-in-cell code. Numerical results are shown for linear electrostatic simulations with ORB5. The growth rate is found to be sensitively dependent on the phase-space shape of the distribution function. The behavior of the instability is qualitatively compared to the theoretical analysis of dispersion relations. Realistic neutral beam energetic particle anisotropic distributions are obtained from the heating solver RABBIT and are introduced into ORB5 as input distribution function. Results show a dependence of the growth rate on the injection angle. A qualitative comparison to experimental measurements is presented and few disagreements between them are found, being the growth rate in the simulations much lower than that from experiments. An explanation for the difference is advanced
    corecore