212 research outputs found
Detection of orbital and superhump periods in Nova V2574 Ophiuchi (2004)
We present the results of 37 nights of CCD unfiltered photometry of nova
V2574 Oph (2004) from 2004 and 2005. We find two periods of 0.14164 d (~3.40 h)
and 0.14773 d (~3.55 h) in the 2005 data. The 2004 data show variability on a
similar timescale, but no coherent periodicity was found. We suggest that the
longer periodicity is the orbital period of the underlying binary system and
that the shorter period represents a negative superhump. The 3.40 h period is
about 4% shorter than the orbital period and obeys the relation between
superhump period deficit and binary period. The detection of superhumps in the
light curve is evidence of the presence of a precessing accretion disk in this
binary system shortly after the nova outburst. From the maximum magnitude -
rate of decline relation, we estimate the decay rate t_2 = 17+/-4 d and a
maximum absolute visual magnitude of M_Vmax = -7.7+/-1.7 mag.Comment: 6 pages, 6 figures, 2 .sty files, AJ accepted, minor change to one of
reference
Bose-Einstein Condensation on a Permanent-Magnet Atom Chip
We have produced a Bose-Einstein condensate on a permanent-magnet atom chip
based on periodically magnetized videotape. We observe the expansion and
dynamics of the condensate in one of the microscopic waveguides close to the
surface. The lifetime for atoms to remain trapped near this dielectric material
is significantly longer than above a metal surface of the same thickness. These
results illustrate the suitability of microscopic permanent-magnet structures
for quantum-coherent preparation and manipulation of cold atoms.Comment: 4 pages, 6 figures, Published in Phys. Rev. A, Rapid Com
Bose-Einstein Condensation on a Permanent-Magnet Atom Chip
We have produced a Bose-Einstein condensate on a permanent-magnet atom chip
based on periodically magnetized videotape. We observe the expansion and
dynamics of the condensate in one of the microscopic waveguides close to the
surface. The lifetime for atoms to remain trapped near this dielectric material
is significantly longer than above a metal surface of the same thickness. These
results illustrate the suitability of microscopic permanent-magnet structures
for quantum-coherent preparation and manipulation of cold atoms.Comment: 4 pages, 6 figures, Published in Phys. Rev. A, Rapid Com
Cold atoms in videotape micro-traps
We describe an array of microscopic atom traps formed by a pattern of
magnetisation on a piece of videotape. We describe the way in which cold atoms
are loaded into one of these micro-traps and how the trapped atom cloud is used
to explore the properties of the trap. Evaporative cooling in the micro-trap
down to a temperature of 1 microkelvin allows us to probe the smoothness of the
trapping potential and reveals some inhomogeneity produced by the magnetic
film. We discuss future prospects for atom chips based on microscopic
permanent-magnet structures.Comment: Submitted for EPJD topical issue "Atom chips: manipulating atoms and
molecules with microfabricated structures
Experimental study of the transport of coherent interacting matter-waves in a 1D random potential induced by laser speckle
We present a detailed analysis of the 1D expansion of a coherent interacting
matterwave (a Bose-Einstein condensate) in the presence of disorder. A 1D
random potential is created via laser speckle patterns. It is carefully
calibrated and the self-averaging properties of our experimental system are
discussed. We observe the suppression of the transport of the BEC in the random
potential. We discuss the scenario of disorder-induced trapping taking into
account the radial extension in our experimental 3D BEC and we compare our
experimental results with the theoretical predictions
The light curve of the semiregular variable L2 Puppis: I. A recent dimming event from dust
The nearby Mira-like variable L2 Pup is shown to be undergoing an
unprecedented dimming episode. The stability of the period rules out intrinsic
changes to the star, leaving dust formation along the line of sight as the most
likely explanation. Episodic dust obscuration events are fairly common in
carbon stars but have not been seen in oxygen-rich stars. We also present a
10-micron spectrum, taken with the Japanese IRTS satellite, showing strong
silicate emission which can be fitted with a detached, thin dust shell,
containing silicates and corundum.Comment: MNRAS (accepted
The electromagnetic model of Gamma Ray Bursts
I describe electromagnetic model of gamma ray bursts and contrast its main
properties and predictions with hydrodynamic fireball model and its
magnetohydrodynamical extension. The electromagnetic model assumes that
rotational energy of a relativistic, stellar-mass central source
(black-hole--accretion disk system or fast rotating neutron star) is converted
into magnetic energy through unipolar dynamo mechanism, propagated to large
distances in a form of relativistic, subsonic, Poynting flux-dominated wind and
is dissipated directly into emitting particles through current-driven
instabilities. Thus, there is no conversion back and forth between internal and
bulk energies as in the case of fireball model. Collimating effects of magnetic
hoop stresses lead to strongly non-spherical expansion and formation of jets.
Long and short GRBs may develop in a qualitatively similar way, except that in
case of long bursts ejecta expansion has a relatively short, non-relativistic,
strongly dissipative stage inside the star. Electromagnetic and fireball models
(as well as strongly and weakly magnetized fireballs) lead to different early
afterglow dynamics, before deceleration time. Finally, I discuss the models in
view of latest observational data in the Swift era.Comment: solicited contribution to Focus Issue of New Journal of Physics, 27
pages, 4 figure
Coherent matter wave inertial sensors for precision measurements in space
We analyze the advantages of using ultra-cold coherent sources of atoms for
matter-wave interferometry in space. We present a proof-of-principle experiment
that is based on an analysis of the results previously published in [Richard et
al., Phys. Rev. Lett., 91, 010405 (2003)] from which we extract the ratio h/m
for 87Rb. This measurement shows that a limitation in accuracy arises due to
atomic interactions within the Bose-Einstein condensate
Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers
Introduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loci, no study has comprehensively evaluated the associations of all known BC susceptibility alleles with risk of BC subtypes in BRCA1 and BRCA2 carriers. Methods: We used data from 15,252 BRCA1 and 8,211 BRCA2 carriers to analyze the associations between approximately 200,000 genetic variants on the iCOGS array and risk of BC subtypes defined by estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and triple-negative- (TN) status; morphologic subtypes; histological grade; and nodal involvement. Results: The estimated BC hazard ratios (HRs) for the 74 known BC alleles in BRCA1 carriers exhibited moderate correlations with the corresponding odds ratios from the general population. However, their associations with ER-positive BC in BRCA1 carriers were more consistent with the ER-positive as
Assessing associations between the AURKAHMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers
While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood appr
- …
