2,005 research outputs found

    Performance of two transferred modules in the Lagunera Region: Water relations

    Get PDF
    Water policy / Performance / Privatization / Irrigation systems / Operations / Maintenance / Irrigation efficiency / Water users' associations / Water rights / Water allocation / Water supply / Water distribution

    Dynamics and Pattern Formation in Large Systems of Spatially-Coupled Oscillators with Finite Response Times

    Full text link
    We consider systems of many spatially distributed phase oscillators that interact with their neighbors. Each oscillator is allowed to have a different natural frequency, as well as a different response time to the signals it receives from other oscillators in its neighborhood. Using the ansatz of Ott and Antonsen (Ref. \cite{OA1}) and adopting a strategy similar to that employed in the recent work of Laing (Ref. \cite{Laing2}), we reduce the microscopic dynamics of these systems to a macroscopic partial-differential-equation description. Using this macroscopic formulation, we numerically find that finite oscillator response time leads to interesting spatio-temporal dynamical behaviors including propagating fronts, spots, target patterns, chimerae, spiral waves, etc., and we study interactions and evolutionary behaviors of these spatio-temporal patterns

    The onset of synchronization in large networks of coupled oscillators

    Full text link
    We study the transition from incoherence to coherence in large networks of coupled phase oscillators. We present various approximations that describe the behavior of an appropriately defined order parameter past the transition, and generalize recent results for the critical coupling strength. We find that, under appropriate conditions, the coupling strength at which the transition occurs is determined by the largest eigenvalue of the adjacency matrix. We show how, with an additional assumption, a mean field approximation recently proposed is recovered from our results. We test our theory with numerical simulations, and find that it describes the transition when our assumptions are satisfied. We find that our theory describes the transition well in situations in which the mean field approximation fails. We study the finite size effects caused by nodes with small degree and find that they cause the critical coupling strength to increase.Comment: To appear in PRE; Added an Appendix, a reference, modified two figures and improved the discussion of the range of validity of perturbative approache

    Effect of a gap on the decoherence of a qubit

    Full text link
    We revisit the problem of the decoherence and relaxation of a central spin coupled to a bath of conduction electrons. We consider both metallic and semiconducting baths to study the effect of a gap in the bath density of states (DOS) on the time evolution of the density matrix of the central spin. We use two weak coupling approximation schemes to study the decoherence. At low temperatures, though the temperature dependence of the decoherence rate in the case of a metallic bath is the same irrespective of the details of the bath, the same is not true for the semiconducting bath. We also calculate the relaxation and decoherence rates as a function of external magnetic fields applied both on the central spin and the bath. We find that in the presence of the gap, there exists a certain regime of fields, for which surprisingly, the metallic bath has lower rates of relaxation and decoherence than the semiconducting bath.Comment: 9 pages, 9 figure

    Magnetic studies of multi-walled carbon nanotube mats: Evidence for the paramagnetic Meissner effect

    Full text link
    We report magnetic measurements up to 1200 K on multi-walled carbon nanotube mats using Quantum Design vibrating sample magnetometer. Extensive magnetic data consistently show two ferrromagnetic-like transitions at about 1000 K and 1275 K, respectively. The lower transition at about 1000 K is associated with an Fe impurity phase and its saturation magnetization is in quantitative agreement with the Fe concentration measured by an inductively coupled plasma mass spectrometer. On the other hand, the saturation magnetization for the higher transition phase (\geq1.0 emu/g) is about four orders of magnitude larger than that expected from the measured concentration of Co or CoFe, which has a high enough Curie temperature to explain this high transition. We show that this transition at about 1275 K is not consistent with a magnetic proximity effect of Fe-carbon systems and ferromagnetism of any carbon-based materials or magnetic impurities but with the paramagnetic Meissner effect due to the existence of π\pi Josephson junctions in a granular superconductor.Comment: 5 pages, 4 figure

    Ultrafast control of Rabi oscillations in a polariton condensate

    Get PDF
    We report the experimental observation and control of space and time-resolved light-matter Rabi oscillations in a microcavity. Our setup precision and the system coherence are so high that coherent control can be implemented with amplification or switching off of the oscillations and even erasing of the polariton density by optical pulses. The data is reproduced by a fundamental quantum optical model with excellent accuracy, providing new insights on the key components that rule the polariton dynamics.Comment: 5 pages, 3 figures, supplementary 7 pages, 4 figures. Supplementary videos: https://drive.google.com/folderview?id=0B0QCllnLqdyBNjlMLTdjZlNhbTQ&usp=sharin

    Microsolvation of NO3 -: Structural exploration and bonding analysis

    Get PDF
    Exploration of the potential energy surfaces (PESs) of various microsolvated species associated with the microsolvation of the nitrate anion using density functional theory methods uncovers a rich and complex structural diversity previously unnoticed in the scientific literature for the [NO3(H2O)n]−, n = 1–6 clusters. Two types of interactions are at play in stabilizing the clusters: traditional water to water and charge assisted nitrate to water hydrogen bonds (HBs). The formal negative charge on oxygen atoms in nitrate strengthens hydrogen bonding among water molecules. There is outstanding agreement between available experimental data (sequential hydration enthalpies, IR spectra, and vertical detachment energies) and the corresponding expectation values obtained from our structures. Each PES is heavily populated in the vicinities of the corresponding global minimum with multiple structures contributing to the experimental properties. The last two statements, in conjunction with results from other works (see for example Phys. Chem. Chem. Phys. 2014, 16, 19241) place a warning on the generalized and naive practice of assigning experimental observations to individual structures
    corecore