59 research outputs found

    Diverse regimes of mode intensity correlation in nanofiber random lasers through nanoparticle doping

    Full text link
    Random lasers are based on disordered materials with optical gain. These devices can exhibit either intensity or resonant feedback, relying on diffusive or interference behaviour of light, respectively, which leads to either coupling or independent operation of lasing modes. We study for the first time these regimes in complex, solid-state nanostructured materials. The number of lasing modes and their intensity correlation features are found to be tailorable in random lasers made of light-emitting, electrospun polymer fibers upon nanoparticle doping. By material engineering, directional waveguiding along the length of fibers is found to be relevant to enhance mode correlation in both intensity feedback and resonant feedback random lasing. The here reported findings can be used to establish new design rules for tuning the emission of nano-lasers and correlation properties by means of the compositional and morphological properties of complex nanostructured materials.Comment: 30 pages, 10 figure

    GHz detection rates and dynamic photon-number resolution with superconducting nanowire arrays

    Full text link
    Superconducting-nanowire single-photon detectors (SNSPDs) have enabled the realization of several quantum optics technologies thanks to their high detection efficiency, low dark-counts, and fast recovery time. However, the widespread use of technologies such as linear optical quantum computing (LOQC), quasi-deterministic single photon sources and quantum repeaters requires faster detectors that can distinguish between different photon number states. Here, we report the fabrication of an SNSPD array composed of 14 independent pixels, achieving a system detection efficiency (SDE) of 90% in the telecom band. By reading each pixel of the array independently we show that the detector can detect telecom photons at 1.5 GHz with 45% absolute SDE. We exploit the dynamic PNR of the array to demonstrate accurate state reconstruction for different photon-number statistics for a wide range of light inputs, including operation with long-duration light pulses, as commonly obtained with some cavity-based sources. We show 2-photon and 3-photon fidelities of 74% and 57% respectively, which represent state-of-the-art results for fiber-coupled SNSPDs

    Doping-free complementary inverter enabled by 2D WSe2 electrostatically-doped reconfigurable transistors

    Get PDF
    Amongst 2-dimensional (2D) semiconductors of the transition-metal di-chalcogenide (TMDC) family [1], tungsten diselenide (WSe2) has shown ambipolar behavior [2], [3] coupled with high carrier mobility [4] and CMOS-like devices have been experimentally demonstrated using chemical doping of the material [5], [6]. However, since chemical doping is often non-compatible with conventional CMOS processes and is limited by the desorption of the chemical species used [5]–[7], we explore the possibilities offered by electrostatic doping. Here, we exploit the presence of Schottky barrier contacts in WSe 2 , and using electrostatic doping we achieve dynamic control of the polarity of the transistors. We fabricate, for the first time on a 2D material, a doping-free complementary inverter, providing a path for the realization of CMOS logic with a single ambipolar, undoped 2D semiconducting material

    Polarity control in WSe2 double-gate transistors

    Get PDF
    As scaling of conventional silicon-based electronics is reaching its ultimate limit, considerable effort has been devoted to find new materials and new device concepts that could ultimately outperform standard silicon transistors. In this perspective two-dimensional transition metal dichalcogenides, such as MoS2 and WSe2, have recently attracted considerable interest thanks to their electrical properties. Here, we report the first experimental demonstration of a doping-free, polarity-controllable device fabricated on few-layer WSe2. We show how modulation of the Schottky barriers at drain and source by a separate gate, named program gate, can enable the selection of the carriers injected in the channel, and achieved controllable polarity behaviour with ON/OFF current ratios >106 for both electrons and holes conduction. Polarity-controlled WSe2 transistors enable the design of compact logic gates, leading to higher computational densities in 2D-flatronics

    Fast Single Photon Detectors and real-time Key Distillation: Enabling High Secret Key Rate QKD Systems

    Full text link
    Quantum Key Distribution has made continuous progress over the last 20 years and is now commercially available. However, the secret key rates (SKR) are still limited to a few Mbps. Here, we present a custom multipixel superconducting nanowire single-photon detectors and fast acquisition and real-time key distillation electronics, removing two roadblocks and allowing an increase of the SKR of more than an order of magnitude. In combination with a simple 2.5 GHz clocked time-bin quantum key distribution system, we can generate secret keys at a rate of 64 Mbps over a distance of 10.0 km and at a rate of 3.0 Mbps over a distance of 102.4 km with real-time key distillation.Comment: 5 pages, 5 figures, submitted to Nature Photonic

    Intellectual Property, Open Science and Research Biobanks

    Get PDF
    In biomedical research and translational medicine, the ancient war between exclusivity (private control over information) and access to information is proposing again on a new battlefield: research biobanks. The latter are becoming increasingly important (one of the ten ideas changing the world, according to Time magazine) since they allow to collect, store and distribute in a secure and professional way a critical mass of human biological samples for research purposes. Tissues and related data are fundamental for the development of the biomedical research and the emerging field of translational medicine: they represent the “raw material” for every kind of biomedical study. For this reason, it is crucial to understand the boundaries of Intellectual Property (IP) in this prickly context. In fact, both data sharing and collaborative research have become an imperative in contemporary open science, whose development depends inextricably on: the opportunities to access and use data, the possibility of sharing practices between communities, the cross-checking of information and results and, chiefly, interactions with experts in different fields of knowledge. Data sharing allows both to spread the costs of analytical results that researchers cannot achieve working individually and, if properly managed, to avoid the duplication of research. These advantages are crucial: access to a common pool of pre-competitive data and the possibility to endorse follow-on research projects are fundamental for the progress of biomedicine. This is why the "open movement" is also spreading in the biobank's field. After an overview of the complex interactions among the different stakeholders involved in the process of information and data production, as well as of the main obstacles to the promotion of data sharing (i.e., the appropriability of biological samples and information, the privacy of participants, the lack of interoperability), we will firstly clarify some blurring in language, in particular concerning concepts often mixed up, such as “open source” and “open access”. The aim is to understand whether and to what extent we can apply these concepts to the biomedical field. Afterwards, adopting a comparative perspective, we will analyze the main features of the open models – in particular, the Open Research Data model – which have been proposed in literature for the promotion of data sharing in the field of research biobanks. After such an analysis, we will suggest some recommendations in order to rebalance the clash between exclusivity - the paradigm characterizing the evolution of intellectual property over the last three centuries - and the actual needs for access to knowledge. We argue that the key factor in this balance may come from the right interaction between IP, social norms and contracts. In particular, we need to combine the incentives and the reward mechanisms characterizing scientific communities with data sharing imperative

    Intellectual Property, Open Science and Research Biobanks

    Full text link
    corecore