115 research outputs found

    Limits to the radiative decay of the axion

    Get PDF
    An axion with a mass greater than 1 eV should be detectable through its decay into two photons. The astrophysical and cosmological limits which define a small window of allowed axion mass above 3 eV are discussed. A firm upper bound to the axion's mass of M(sub a) less than or equal to 8 eV is derived by considering the effect of decaying axions upon the diffuse extragalactic background radiation and the brightness of the night sky due to axions in the halo of the Milky Way galaxy. The intergalactic light of clusters of galaxies is shown to be an ideal place to search for an emission line arising from the radiative decay of axions. An unsuccessful search for this emission line in three clusters of galaxies is then detailed. Limits to the presence of any intracluster line emission are derived with the result that axions with masses between 3 and 8 eV are excluded by the data, effectively closing this window of axion mass, unless a severe cancellation of axionic decay amplitudes occurs. The intracluster flux limits are then used to constrain the amplitude of any such model dependence

    Sterile neutrino dark matter in warped extra dimensions

    Full text link
    We consider a (long-lived) sterile neutrino dark matter scenario in a five dimensional (5D) warped extra dimension model where the fields can live in the bulk, which is partly motivated from the absence of the absolutely stable particles in a simple Randall-Sundrum model. The dominant production of the sterile neutrino can come from the decay of the radion (the scalar field representing the brane separation) around the electroweak scale. The suppressions of the 4D parameters due to the warp factor and the small wave function overlaps in the extra dimension help alleviate the exceeding fine-tunings typical for a sterile neutrino dark matter scenario in a 4D setup.Comment: Typos corrected and references adde

    Limit on T-violating P-conserving rhoNN interaction from the gamma decay of Fe-57

    Get PDF
    We use the experimental limit on the interference of M1 and E2 multipoles in the γ decay of 57Fe to bound the time-reversal-violating parity-conserving ρNN vertex. Our approach is a large-basis shell-model calculation of the interference. We find an upper limit on the parameter g¯ρ, the relative strength of the T-violating ρNN vertex, of close to 10^(-2), a value similar to the best limits from other experiments

    The grand unified photon spectrum: A coherent view of the diffuse extragalactic background radiation

    Get PDF
    The spectrum of diffuse extragalactic background radiation (DEBRA) at wavelengths from 10(exp 5) to 10(exp -24) cm is presented in a coherent fashion. Each wavelength region, from the radio to ultra-high energy photons and cosmic rays, is treated both separately and as part of the grand unified photon spectrum (GUPS). A discussion of, and references to, the relevant literature for each wavelength region is included. This review should provide a useful tool for those interested in diffuse backgrounds, the epoch of galaxy formation, astrophysical/cosmological constraints to particle properties, exotic early Universe processes, and many other astrophysical and cosmological enterprises. As a worked example, researchers derive the cosmological constraints to an unstable-neutrino spies (with arbitrary branching ratio to a radiative decay mode) that follow from the GUPS

    Spin-Dependent Neutralino-Nucleus Scattering for A127A \sim 127 Nuclei

    Full text link
    We perform nuclear shell model calculations of the neutralino-nucleus cross section for several nuclei in the A = 127 region. Each of the four nuclei considered is a primary target in a direct dark matter detection experiment. The calculations are valid for all relevant values of the momentum transfer. Our calculations are performed in the 3s2d1g7/21h11/23s 2d 1g_{7/2} 1h_{11/2} model space using extremely large bases, allowing us to include all relevant correlations. We also study the dependence of the nuclear response upon the assumed nuclear Hamiltonian and find it to be small. We find good agreement with the observed magnetic moment as well as other obervables for the four nuclei considered: ^{127}I, ^{129,131}Xe, and ^{125}Te.Comment: 23 pages + 7 postscript figures. LaTeX uses RevTe

    Axions and SN 1987A: Axion trapping

    Get PDF
    If an axion of mass between about 10(exp -3) eV and 1 eV exists, axion emission would have significantly affected the cooling of the nascent neutron star associated with SN 1987A. For an axion of mass less than about 10(exp -2) eV, axions produced deep inside the neutron star simply stream out; in a previous paper this case has been addressed. Remarkably, for an axion of mass greater than about 10(exp -2) eV axions would, like neutrinos, have a mean-free path that is smaller than the size of a neutron star, and thus would become 'trapped' and radiated from an axion sphere. In this paper the trapping regime is treated by using numerical models of the initial cooling of a hot neutron star that incorporate a leakage approximation scheme for axion-energy transport. The axion opacity is computed due to inverse nucleon-nucleon, axion bremsstrahlung, and numerical models are used to calculate the integrated axion luminosity, the temperature of the axion sphere, and the effect of axion emission on the neutrino bursts detected by the Kamiokande 2 (K2) and Irvine-Michigan-Brookhaven (IMB) water-Cherenkov detectors. The larger the axion mass, the stronger the trapping and the smaller the axion luminosity. The earlier estimate is confirmed and refined of the axion mass above which trapping is so strong that axion emission does not significantly affect the neutrino burst. Based upon the neutrino-burst duration--the most sensitive barometer of axion cooling--it is concluded that for an axion mass of greater than about 0.3 eV, axion emission would not have had a significant effect on the neutrino bursts detected by K2 and IMB. The present work, together with the previous work, strongly suggests that an axion with mass in the interval 10(exp -3) eV to 0.3 eV is excluded by SN 1987A

    Revisiting cosmological bounds on radiative neutrino lifetime

    Full text link
    Neutrino oscillation experiments and direct bounds on absolute masses constrain neutrino mass differences to fall into the microwave energy range, for most of the allowed parameter space. As a consequence of these recent phenomenological advances, older constraints on radiative neutrino decays based on diffuse background radiations and assuming strongly hierarchical masses in the eV range are now outdated. We thus derive new bounds on the radiative neutrino lifetime using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of Cosmic Background Explorer. The lower bound on the lifetime is between a few x 10^19 s and 5 x 10^20 s, depending on the neutrino mass ordering and on the absolute mass scale. However, due to phase space limitations, the upper bound in terms of the effective magnetic moment mediating the decay is not better than ~ 10^-8 Bohr magnetons. We also comment about possible improvements of these limits, by means of recent diffuse infrared photon background data. We compare these bounds with pre-existing limits coming from laboratory or astrophysical arguments. We emphasize the complementarity of our results with others available in the literature.Comment: 7 pages, 3 figures. Minor changes in the text, few references added. Matches the published versio

    Diffuse Background Radiation

    Get PDF
    A new determination of the upper limit to the cosmic diffuse background radiation, at ~110 nm, of 300 photons s-1 cm-2 sr-1 nm-1, is placed in the context of diffuse background measurements across the entire electromagnetic spectrum, including new optical, infrared, visible, and gamma-ray background measurements. The possibility that observed excess diffuse visible radiation is due to redshifted cosmological Lyman alpha recomination radiation is explored. Also, a new standard of units for the display of spectra is advocated.Comment: Nine pages and one figur

    A New Model-Independent Method for Extracting Spin-Dependent Cross Section Limits from Dark Matter Searches

    Get PDF
    A new method is proposed for extracting limits on spin-dependent WIMP-nucleon interaction cross sections from direct detection dark matter experiments. The new method has the advantage that the limits on individual WIMP-proton and WIMP-neutron cross sections for a given WIMP mass can be combined in a simple way to give a model-independent limit on the properties of WIMPs scattering from both protons and neutrons in the target nucleus. Extension of the technique to the case of a target material consisting of several different species of nuclei is discussed.Comment: 15 pages, 6 Encapsulated Postscript figure

    Bulk Viscosity, Decaying Dark Matter, and the Cosmic Acceleration

    Get PDF
    We discuss a cosmology in which cold dark-matter particles decay into relativistic particles. We argue that such decays could lead naturally to a bulk viscosity in the cosmic fluid. For decay lifetimes comparable to the present hubble age, this bulk viscosity enters the cosmic energy equation as an effective negative pressure. We investigate whether this negative pressure is of sufficient magnitude to account fo the observed cosmic acceleration. We show that a single decaying species in a flat, dark-matter dominated cosmology without a cosmological constant cannot reproduce the observed magnitude-redshift relation from Type Ia supernovae. However, a delayed bulk viscosity, possibly due to a cascade of decaying particles may be able to account for a significant fraction of the apparent cosmic acceleration. Possible candidate nonrelativistic particles for this scenario include sterile neutrinos or gauge-mediated decaying supersymmetric particles.Comment: 7 pages, 4 figure
    corecore