We discuss a cosmology in which cold dark-matter particles decay into
relativistic particles. We argue that such decays could lead naturally to a
bulk viscosity in the cosmic fluid. For decay lifetimes comparable to the
present hubble age, this bulk viscosity enters the cosmic energy equation as an
effective negative pressure. We investigate whether this negative pressure is
of sufficient magnitude to account fo the observed cosmic acceleration. We show
that a single decaying species in a flat, dark-matter dominated cosmology
without a cosmological constant cannot reproduce the observed
magnitude-redshift relation from Type Ia supernovae. However, a delayed bulk
viscosity, possibly due to a cascade of decaying particles may be able to
account for a significant fraction of the apparent cosmic acceleration.
Possible candidate nonrelativistic particles for this scenario include sterile
neutrinos or gauge-mediated decaying supersymmetric particles.Comment: 7 pages, 4 figure