21 research outputs found

    P211 Cell-free scaffold implantation in the horse

    Get PDF

    Cryopreservation Effect on Proliferative and Chondrogenic Potential of Human Chondrocytes Isolated from Superficial and Deep Cartilage

    Get PDF
    [Abstract] Objectives: To compare the proliferative and chondrogenic potential of fresh and frozen chondrocytes isolated from superficial and deep articular cartilage biopsies. Materials and Methodology: The study included 12 samples of fresh and frozen healthy human knee articular cartilage. Cell proliferation was tested at 3, 6 and 9 days. Studies of mRNA quantification, protein expression and immunofluorescence for proliferation and chondrogenic markers were performed. Results: Stimulation of fresh and frozen chondrocytes from both superficial and deep cartilage with fetal bovine serum produced an increase in the proliferative capacity compared to the non-stimulated control group. In the stimulated fresh cells group, the proliferative capacity of cells from the deep biopsy was greater than that from cells from the superficial biopsy (0.046 vs 0.028, respectively, p<0.05). There was also a significant difference between the proliferative capacity of superficial zone fresh (0.028) and frozen (0.051) chondrocytes (p<0.05). CCND1 mRNA and protein expression levels, and immunopositivity for Ki67 revealed a higher proliferative capacity for fresh articular chondrocytes from deep cartilage. Regarding the chondrogenic potential, stimulated fresh cells showed higher SOX9 and Col II expression in chondrocytes from deep than from superficial zone (p<0.05, T student test). Conclusions: The highest rate of cell proliferation and chondrogenic potential of fresh chondrocytes was found in cells obtained from deep cartilage biopsies, whereas there were no statistically significant differences in proliferative and chondrogenic capacity between biopsy origins with frozen chondrocytes. These results indicate that both origin and cryopreservation affect the proliferative and chondrogenic potential of chondrocytes.Servizo Galego de Saúde; PS07/84Instituto de Salud Carlos III; CIBER BBN CB06-01-0040Ministerio Ciencia e Innovacion; PLE2009-0144Ministerio Ciencia e Innovación; PI 08/202

    Detection of urolithiasis using low-dose CT : a noise simulation study

    No full text
    How does an acquisition at reduced doses using automatic tube current modulation techniques compare to the normal standard dose CT? Does it affect the sensitivity for detection of calcifications? CT raw data of 54 patients with suspected urolithiasis acquired with automatic tube current modulation techniques were used for image noise simulations with 100%, 50% and 25% dose simulated. Data were analyzed by independent readers with regard to the presence of urolithiasis, stone location, size, density and differential diagnoses. The mean effective dose per standard examination/50%/25% simulation was 7.3 mSv/3.8 mSv/1.9 mSv. Sensitivities/specificities for detection of urolithiasis were calculated for all dose simulations and resulted in 0.94/0.98 in the 50% dose level group and 0.82/0.97 in the 25% dose level group. Low-dose CT with tube current modulation can be used as a standard procedure for the evaluation of patients with suspected acute renal colic

    Magnetic resonance imaging for diagnosis and assessment of cartilage defect repairs

    No full text
    Clinical magnetic resonance imaging (MRI) is the method of choice for the non-invasive evaluation of articular cartilage defects and the follow-up of cartilage repair procedures. The use of cartilage-sensitive sequences and a high spatial-resolution technique enables the evaluation of cartilage morphology even in the early stages of disease, as well as assessment of cartilage repair. Sequences that offer high contrast between articular cartilage and adjacent structures, such as the fat-suppressed, 3-dimensional, spoiled gradient-echo sequence and the fast spin-echo sequence, are accurate and reliable for evaluating intrachondral lesions and surface defects of articular cartilage. These sequences can also be performed together in reasonable examination times. In addition to morphology, new MRI techniques provide insight into the biochemical composition of articular cartilage and cartilage repair tissue. These techniques enable the diagnosis of early cartilage degeneration and help to monitor the effect and outcome of various surgical and non-surgical cartilage repair therapies
    corecore