16 research outputs found

    Lawsonia intracellularis in pigs: progression of lesions and Involvement of apoptosis

    Get PDF
    The purpose of this study was to follow the progression of gross and histologic lesions and apoptosis events in Lawsonia intracellularis- infected enterocytes through the course of the disease, proliferative enteropathy (PE). Thirty 5-week-old pigs were divided into 2 groups: 20 challenged and 10 control animals. Groups of 3 pigs, 2 challenged and 1 control, were euthanized at 1, 3, 5, 8, 11, 15, 19, 24, 29, and 35 days after inoculation. Complete necropsies were performed with gross evaluation. Tissue samples from different sites of the gastrointestinal tract and other visceral organs were collected for routine histologic staining and for immunohistochemistry (IHC) for L. intracellularis. In addition, caspase-3, terminal deoxyuridine nick-end labeling assay, and electron microscopy were performed in ileum samples. Macroscopic and histologic lesions suggestive of PE were first detected 11 days after infection and continued through day 24. L. intracellularis antigen was first detected in the intestine by IHC on day 5 after inoculation, and the bacterium was first detected by transmission electron microscopy on day 15. Positive IHC staining for [L. intracellularis] and enterocyte proliferation, but no gross lesion, were detected on day 29. All 3 pigs euthanized on day 35 were grossly and histologically normal and IHC negative. Hyperplastic crypts in challenge pigs had more apoptotic cells on days 15, 19, and 24 postinfection (P < .05) compared to control pigs. Our results demonstrated the progression of lesions and infection by L. intracellularis and that inhibition of enterocyte apoptosis is not involved in the pathogenesis of proliferative enteropathy.Facultad de Ciencias Veterinaria

    Equine proliferative enteropathy on a Brazilian farm

    No full text
    Abstract:Lawsonia intracellularis infection on a horse farm in the Midwest region of Brazil is described. Thirty-nine foals a few days to months old from a herd with 300 horses, experienced diarrhea with variable characteristics and intensities, weight loss, hyperemic mucous membranes and dehydration. In foals 3 to 6 months of age, hypoproteinemia associated with submandibular edema were also common. Intestinal fragments of a 7-month-old foal were sent to an animal disease laboratory for diagnosis. The observed macroscopic lesions were hyperemic serosa, thickening of the intestinal wall with a corrugation, thickening of the mucosa folds and reduction of intestinal lumen. Histological analysis of the small and large intestine revealed enterocyte hyperplasia of the crypts associated with diffuse marked decrease in the number of goblet cells and positive L. intracellularis antigen labeling by immunohistochemistry. Three out of 11 animals of the same property were seropositive for L. intracellularis, demonstrating the circulation of the agent throughout the farm, but none were PCR positive in fecal samples. Based on clinical signs and pathological findings, the diagnosis of equine proliferative enteropathy was confirmed

    A novel RNA-based <i>in situ</i> hybridization to detect Seneca Valley virus in neonatal piglets and sows affected with vesicular disease

    No full text
    <div><p>Seneca Valley virus (SVV) is the causative agent of an emerging vesicular disease in swine, which is clinically indistinguishable from other vesicular diseases such as foot-and-mouth disease. In addition, SVV has been associated with neonatal mortality in piglets. While a commercial SVV qRT-PCR is available, commercial antibodies are lacking to diagnose SVV infections by immunohistochemistry (IHC). Thus, a novel <i>in situ</i> hybridization technique—RNAscope (ISH) was developed to detect SVVRNA in infected tissues. From a total of 78 samples evaluated, 30 were positive by qRT-PCR and ISH-RNA, including vesicular lesions of affected sows, ulcerative lesions in the tongue of piglets and various other tissues with no evidence of histological lesions. Nineteen samples were negative for SVV by qRT-PCR and ISH-RNA. The Ct values of the qRT-PCR from ISH-RNA positive tissues varied from 12.0 to 32.6 (5.12 x 10<sup>6</sup> to 5.31 RNA copies/g, respectively). The ISH-RNA technique is an important tool in diagnosing and investigating the pathogenesis of SVV and other emerging pathogens.</p></div

    SVV distribution in tissues without evidence of histological lesions.

    No full text
    <p>Swine, ISH-RNA. a) Piglet, spleen (central arteriole). Strong SVV positive staining diffusely distributed throughout the splenic parenchyma. ISH-RNA, 20x.; b) Piglet, spleen. Negative control. ISH-RNA, 20x; c) Piglet, small intestine. SVV mRNA was multifocally distributed within enterocytes (black arrows) and lamina propria. ISH-RNA, 20x; d) Piglet, lung, SVV positive signals were found in alveolar septum. ISH-RNA, 20x.</p
    corecore