15 research outputs found

    Ab initio Quantum and ab initio Molecular Dynamics of the Dissociative Adsorption of Hydrogen on Pd(100)

    Full text link
    The dissociative adsorption of hydrogen on Pd(100) has been studied by ab initio quantum dynamics and ab initio molecular dynamics calculations. Treating all hydrogen degrees of freedom as dynamical coordinates implies a high dimensionality and requires statistical averages over thousands of trajectories. An efficient and accurate treatment of such extensive statistics is achieved in two steps: In a first step we evaluate the ab initio potential energy surface (PES) and determine an analytical representation. Then, in an independent second step dynamical calculations are performed on the analytical representation of the PES. Thus the dissociation dynamics is investigated without any crucial assumption except for the Born-Oppenheimer approximation which is anyhow employed when density-functional theory calculations are performed. The ab initio molecular dynamics is compared to detailed quantum dynamical calculations on exactly the same ab initio PES. The occurence of quantum oscillations in the sticking probability as a function of kinetic energy is addressed. They turn out to be very sensitive to the symmetry of the initial conditions. At low kinetic energies sticking is dominated by the steering effect which is illustrated using classical trajectories. The steering effects depends on the kinetic energy, but not on the mass of the molecules. Zero-point effects lead to strong differences between quantum and classical calculations of the sticking probability. The dependence of the sticking probability on the angle of incidence is analysed; it is found to be in good agreement with experimental data. The results show that the determination of the potential energy surface combined with high-dimensional dynamical calculations, in which all relevant degrees of freedon are taken into account, leads to a detailed understanding of the dissociation dynamics of hydrogen at a transition metal surface.Comment: 15 pages, 9 figures, subm. to Phys. Rev.

    Reduction of Tc(VII) by Fe(II) Sorbed on Al (hydr)oxides

    Get PDF
    Under oxic conditions, Tc exists as the soluble, weakly sorbing pertechnetate [TcO4-] anion. The reduced form of technetium, Tc(IV), is stable in anoxic environments and is sparingly soluble as TcO2 ·nH2O(s). Here we investigate the heterogeneous reduction of Tc(VII) by Fe(II) adsorbed on Al (hydr)oxides [diaspore (α-AlOOH) and corundum (α-Al2O3)]. Experiments were performed to study the kinetics of Tc(VII) reduction, examine changes in Fe surface speciation during Tc(VII) reduction (Mössbauer spectroscopy), and identify the nature of Tc(IV)-containing reaction products (X-ray absorption spectroscopy). We found that Tc(VII) was completely reduced by adsorbed Fe(II) within 11 (diaspore suspension) and 4 days(corundum suspension).Mössbauer measurements revealed that the Fe(II) signal became less intense with Tc(VII) reduction and was accompanied by an increase in the intensity of the Fe(III) doublet and magnetically ordered Fe(III) sextet signals. Tc-EXAFS spectroscopy revealed that the final heterogeneous redox product on corundum was similar to Tc(IV) oxyhydroxide, TcO2 ·nH2O

    Heterogeneous reduction of Tc(VII) by Fe(II) at the solid–water interface

    Get PDF
    Experiments were performed herein to investigate the rates and products of heterogeneous reduction of Tc(VII) by Fe(II) adsorbed to hematite and goethite, and by Fe(II) associated with a dithionite–citrate–bicarbonate (DCB) reduced natural phyllosilicate mixture [structural, ion-exchangeable, and edge-complexed Fe(II)] containing vermiculite, illite, and muscovite. The heterogeneous reduction of Tc(VII) by Fe(II) adsorbed to the Fe(III) oxides increased with increasing pH and was coincident with a second event of Fe2+(aq) adsorption. The reaction was almost instantaneous above pH 7. In contrast, the reduction rates of Tc(VII) by DCB-reduced phyllosilicates were not sensitive to pH or to added Fe2+(aq) that adsorbed to the clay. The reduction kinetics were orders of magnitude slower than observed for the Fe(III) oxides, and appeared to be controlled by structural Fe(II). The following affinity series for heterogeneous Tc(VII) reduction by Fe(II) was suggested by the experimental results: aqueous Fe(II) ~ adsorbed Fe(II) in phyllosilicates [ion-exchangeable and some edge-complexed Fe(II)] « structural Fe(II) in phyllosilicates « Fe(II) adsorbed on Fe(III) oxides. Tc-EXAFS spectroscopy revealed that the reduction products were virtually identical on hematite and goethite that were comprised primarily of sorbed octahedral TcO2 monomers and dimers with significant Fe(III) in the second coordination shell. The nature of heterogeneous Fe(III) resulting from the redox reaction was ambiguous as probed by Tc-EXAFS spectroscopy, although Mossbauer spectroscopy applied to an experiment with 56Fe-goethite with adsorbed 57Fe(II) implied that redox product Fe(III) was goethite-like. The Tc(IV) reduction product formed on the DCB-reduced phyllosilicates was different from the Fe(III) oxides, and was more similar to Tc(IV) oxyhydroxide in its second coordination shell. The heterogeneous reduction of Tc(VII) to less soluble forms by Fe(III) oxideadsorbed Fe(II) and structural Fe(II) in phyllosilicates may be an important geochemical process that will proceed at very different rates and that will yield different surface species depending on subsurface pH and mineralogy

    Influences on Subsurface Plutonium and Americium Migration

    No full text
    Plutonium (Pu) has been released to the environment worldwide, including approximately 1.85 × 1015 Bq (200 kg) of Pu from process waste solutions to unconfined soil structures at the Hanford Site in Washington State. The subsurface mobility of Pu is influenced by complex interactions with sediments, groundwater, and any co-contaminants within the waste stream. Previous investigations at Hanford have shown that Pu exists as discrete PuO2 particles forming before or after disposal, as secondary solid phases formed from waste interactions with sediments as adsorbed/incorporated species, and/or as dissolved species. In this research, new evidence is presented for the existence of PuO2, PuO2-Bi2O3 composites, and particles from burnt Pu metal in near-surface sediments where Pu-laden acidic process waste was disposed to sediments. Pu and americium (Am) L3 X-ray absorption spectroscopy and density functional theory suggest that, in larger, more crystalline PuO2 particles, Am formed from radioactive decay is retained in the PuIVO2 structure as AmIV. The Pu and Am that were disposed of in an acidic waste stream have since migrated deeper into the subsurface with detection to at least 37 meters below ground surface. In contrast, Pu deposited near the ground surface from neutral pH waste is found to be homogeneously distributed and relatively immobile. Groundwater extractions performed on contaminated sediments indicate that both Pu and Am are recalcitrant, with Am being fractionally less extractable than Pu on a molar basis. These results suggest that the more mobile fraction of Am has migrated from the near-surface and may be present in the deeper sediments as a different phase than Pu. From these results, it is suggested that Pu and Am deposited from acidic wastes were initially mobile and became significantly less mobile as wastes were neutralized within the soil profile.
    corecore