12 research outputs found

    Nontrivial Galois module structure of cyclotomic fields

    Get PDF
    We say a tame Galois field extension L/KL/K with Galois group GG has trivial Galois module structure if the rings of integers have the property that \Cal{O}_{L} is a free \Cal{O}_{K}[G]-module. The work of Greither, Replogle, Rubin, and Srivastav shows that for each algebraic number field other than the rational numbers there will exist infinitely many primes ll so that for each there is a tame Galois field extension of degree ll so that L/KL/K has nontrivial Galois module structure. However, the proof does not directly yield specific primes ll for a given algebraic number field K.K. For KK any cyclotomic field we find an explicit ll so that there is a tame degree ll extension L/KL/K with nontrivial Galois module structure

    Improvements to water purification and sanitation infrastructure may reduce the diarrheal burden in a marginalized and flood prone population in remote Nicaragua

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The isolated northern region of Nicaragua has one of the highest rates of diarrheal disease in Central America. Political and environmental hardships faced by inhabitants of this region are contributing factors to this health inequity. The aim of this study was to assess the relationship between water and latrine infrastructure and the prevalence of diarrhea in this region.</p> <p>Methods</p> <p>A population-based, cross-sectional survey of women of reproductive age was conducted in the Sahsa region of northern Nicaragua in July, 2009. Households were selected by two stage cluster sampling methodology. A questionnaire was administered in Spanish and Miskito with assessment of household and socioeconomic conditions, sanitation practices, and health care access. Diarrhea prevalence differences at the household level over a two week reporting period were estimated with a standardized instrument which included assessment of water treatment and latrine use and maintenance.</p> <p>Results</p> <p>There were 189 women enrolled in the current study. The use of water purification methods, such as chlorine and filters, and latrine ownership were not associated with reduced prevalence of household diarrhea in the two week reporting period. Latrine overflow, however, was associated with an increased prevalence of diarrhea during the same two week period [adjusted prevalence difference and 95% CI: 0.19 (0.03, 0.36)].</p> <p>Conclusions</p> <p>Simple, low cost interventions that improve water and latrine infrastructure may reduce the prevalence of diarrheal disease in the isolated regions of Nicaragua and Central America.</p

    A candidate regulatory variant at the TREM gene cluster associates with decreased Alzheimer's disease risk and increased TREML1 and TREM2 brain gene expression

    Get PDF
    Introduction: We hypothesized that common Alzheimer's disease (AD)-associated variants within the triggering receptor expressed on myeloid (TREM) gene cluster influence disease through gene expression. Methods: Expression microarrays on temporal cortex and cerebellum from ∼400 neuropathologically diagnosed subjects and two independent RNAseq replication cohorts were used for expression quantitative trait locus analysis. Results: A variant within a DNase hypersensitive site 5′ of TREM2, rs9357347-C, associates with reduced AD risk and increased TREML1 and TREM2 levels (uncorrected P = 6.3 × 10−3 and 4.6 × 10−2, respectively). Meta-analysis on expression quantitative trait locus results from three independent data sets (n = 1006) confirmed these associations (uncorrected P = 3.4 × 10−2 and 3.5 × 10−3, Bonferroni-corrected P = 6.7 × 10−2 and 7.1 × 10−3, respectively). Discussion: Our findings point to rs9357347 as a functional regulatory variant that contributes to a protective effect observed at the TREM locus in the International Genomics of Alzheimer's Project genome-wide association study meta-analysis and suggest concomitant increase in TREML1 and TREM2 brain levels as a potential mechanism for protection from AD

    Low Modulus Biomimetic Microgel Particles with High Loading of Hemoglobin

    No full text
    We synthesized extremely deformable red blood cell-like microgel particles and loaded them with bovine hemoglobin (Hb) to potentiate oxygen transport. With similar shape and size as red blood cells (RBCs), the particles were fabricated using the PRINT(®) (Particle Replication In Non-wetting Templates) technique. Low crosslinking of the hydrogel resulted in very low mesh density for these particles, allowing passive diffusion of hemoglobin throughout the particles. Hb was secured in the particles through covalent conjugation of the lysine groups of Hb to carboxyl groups in the particles via EDC/NHS coupling. Confocal microscopy of particles bound to fluorescent dye-labeled Hb confirmed the uniform distribution of Hb throughout the particle interior, as opposed to the surface conjugation only. High loading ratios, up to 5 times the amount of Hb to polymer by weight, were obtained, without a significant effect on particle stability, shape, though particle diameter decreased slightly with Hb conjugation. Analysis of the protein by circular dichroism (CD) spectroscopy showed that the secondary structure of Hb was unperturbed by conjugation to the particles. Methemoglobin in the particles could be maintained at a low level and the loaded Hb could still bind oxygen as studied by UV-vis spectroscopy. Hb-loaded particles with moderate loading ratios demonstrated excellent deformability in microfluidic devices, easily deforming to pass through restricted pores half as wide as the diameter of the particles. The suspension of concentrated particles with Hb concentration of 5.2 g/dL showed comparable viscosity to that of mouse blood, and the particles remained intact even after being sheared at a constant high rate (1,000 1/s) for 10 min. Armed with the ability to control size, shape, deformability, and loading of Hb into RBC mimics, we will discuss the implications for artificial blood

    Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing

    No full text
    Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in which expressed sgRNAs are sequenced alongside single-cell transcriptomes. Direct-capture Perturb-seq enables detection of multiple distinct sgRNA sequences from individual cells and thus allows pooled single-cell CRISPR screens to be easily paired with combinatorial perturbation libraries that contain dual-guide expression vectors. We demonstrate the utility of this approach for high-throughput investigations of genetic interactions and, leveraging this ability, dissect epistatic interactions between cholesterol biogenesis and DNA repair. Using direct capture Perturb-seq, we also show that targeting individual genes with multiple sgRNAs per cell improves efficacy of CRISPR interference and activation, facilitating the use of compact, highly active CRISPR libraries for single-cell screens. Last, we show that hybridization-based target enrichment permits sensitive, specific sequencing of informative transcripts from single-cell RNA-seq experiments
    corecore