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Nontrivial Galois Module Structure of Cyclotomic Fields
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Abstract: We say a tame Galois field extension L/K with Galois group G has
trivial Galois module structure if the rings of integers have the property that OL is
a free OK [G]-module. The work of Greither, Replogle, Rubin, and Srivastav shows
that for each algebraic number field other than the rational numbers there will exist
infinitely many primes l so that for each there is a tame Galois field extension of
degree l so that L/K has nontrivial Galois module structure. However, the proof
does not directly yield specific primes l for a given algebraic number field K. For K
any cyclotomic field we find an explicit l so that there is a tame degree l extension
L/K with nontrivial Galois module structure.
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Section 1: Introduction to Cyclotomic

Swan Subgroups and Galois Module Theory

Let G be a group of finite order m. Let L/K be a tame (i.e. at most tamely rami-
fied) Galois extension of algebraic number fields with finite Galois groupGal(L/K) ∼=
G. Let OL and OK denote the respective rings of algebraic integers. We say L/K
has a trivial Galois module structure if OL is a free OK [G]-module. Equivalently,
one says in this case L/K has a normal integral basis. (Note: One always has
that OL is a rank one locally free OK [G]-module whenever L/K is a tame Galois
extension with Galois group G).

The classical Hilbert-Speiser theorem proves that any abelian extension of Q,
the field of rational numbers, has a trivial Galois module structure. Call a field K
Hilbert-Speiser if each tame abelian extension has a trivial Galois module structure.
In [2] tame elementary abelian extensions and Swan modules are considered to find
conditions a Hilbert-Speiser field must satisfy. Let Vl = (OK/lOK)∗/Im(O∗

K) where
for any ring S we let S∗ denote its group of multiplicative units and Im denotes the
image of O∗

K under the canonical surjection ψ : OK −→ OK/lOK . Then we have
the following theorem.

Theorem 1.0 ([4, Theorem 1]). Let K be a Hilbert-Speiser number field. Then:
(i) The class number of K is one.

(ii) For each odd prime l the group Vl has exponent dividing (l−1)2

2 .
(iii) The group V2 is nontrivial.

This theorem and a Galois theoretic argument are used to show for any K 6= Q
there is some odd prime l for which condition (ii) is violated. Thus we have the
following theorem.

Theorem 1.1 ([4, Theorem 2]). Among all algebraic number fields only the
rational numbers are Hilbert-Speiser.

For the convenience of the reader we outline the ideas in the proofs of these two
results. The over all idea is that V l−1

l will be seen to be a lower bound on the Swan

subgroup, and V
(l−1)2/2
l will be seen to be a lower bound on the group of realisable

classes. Let Λ = OK [G]. Then Λ is an order in the group algebra K[G]. For each
s in OK so that s and m are relatively prime one defines the Swan module 〈s,Σ〉
by 〈s,Σ〉 = sΛ + ΛΣ, where Σ =

∑
g∈G g. It is easily shown each 〈s,Σ〉 is a rank

one locally free Λ-module. (See [15, Proposition 2] for example). Hence each Swan
module determines a class in the locally free classgroup Cl(Λ). We denote the class
of 〈s,Σ〉 by [s,Σ]. Denote the set (at this point) of all classes of Swan modules
over Λ by T (Λ). Let D(Λ), the kernel group, denote the subgroup of Cl(Λ) of all
classes that become trivial upon extension of scalars to the maximal order in K[G]
containing Λ. Let Γ = Λ/ΣΛ, ψ : OK −→ OK/mOK = OK denote the canonical
quotient map, ǫ : Λ −→ OK denote the augmentation map, and let ǫ : Γ −→ OK

be induced from ǫ. The main result of [9] shows that if the group algebra K[G]
satisfies an Eichler condition (which is always satisfied if G is abelian) then there
exists an exact Mayer-Vietoris sequence:
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O∗
K × Γ∗ h

−→OK
∗ δ
−→D(Λ) −→ D(Γ) ⊕D(OK) −→ 0, (1.0)

where for any ring S we have been denoting its group of multiplicative units by S∗.
It is further shown in [9] that the map h is given by: h[(u, v)] = ψ(u)ǫ(v)−1. From
[15] we have that the map δ is given by: δ(s) = [s,Σ]. Hence we have from (1.0)
that T (Λ) is a subgroup of D(Λ) and :

T (Λ) ∼= (OK)∗/h(O∗
K × Γ∗). (1.1)

Now let Vl = (OK/lOK)∗/Im(O∗
K) and set G ∼= Cl, the cylcic group of prime

order l. Then in [4] a lower bound on T (Λ) is deduced from (1.1) above. Namely
one may show for G ∼= Cl and Λ = OK [Cl] there is a natural surjective map:

T (Λ) −→ V l−1
l . (1.2)

See [4,Theorem 5] which handles the elementary abelian group case.
Now consider tame Galois extensions of K with Gal(L/K) ∼= Cl where Cl is

the cyclic group of order l. Of course each such extension L has the property that
OL is a locally free rank one OK [G]-module. Hence each OL determines a tame
Galois module class [OL] in the locally free classgroup Cl(Λ). Denote by R(Λ) the
set of all such classes. Observe R(Λ) measures to what extent a given base field K
fails to have Galois extensions with Galois group G having nontrivial Galois module
structure. In [7] McCulloh gives an explicit description of R(Λ) as a subgroup of
Cl(Λ) for the case considered here. We note in [8] McCulloh shows that R(Λ) is
in fact a subgroup of Cl(Λ) for all abelian G, however that result is not used here.
Using the description of R(Λ) from [7] we have the following relationship between
R(Λ), D(Λ), and T (Λ) stated for the case we are considering. If G ∼= Cl where l > 2
is prime, then by [4, Proposition 4] the Swan subgroup has the property that

T (Λ)(l−1)/2 ⊆ R(Λ) ∩D(Λ). (1.3)

Observe that condition (ii) of Theorem 1.0 follows from (1.2) and (1.3). The
proof of Theorem 1.1 uses the Cebotarev density theorem to establish the existence
of infinitely many primes for which condition (ii) of Theorem 1.0 is violated. It
is not clear whether one can use the proof of Theorem 1.1 to actually write down
any explicit such primes. In fact as the proof of [4, Theorem 2] uses the Cebotarev
density theorem to show the existence of such a prime by showing infinitely many
must exist it is unlikely one could use that argument to write down any such primes.
We adopt the following terminology. If given a field K we have an explicit prime l
so that there is a tame Galois extension L/K with Gal(L/K) ∼= Cl, the cyclic group
of order l, so that OL is not a free OK [Cl]-module we say K is not Hilbert-Speiser
for l. Then Theorem 1.1 says for any algebraic number field K there is some l for
which K is not Hilbert-Speiser for l.

In this article we show that for any cyclotomic field one may in fact find a specific
prime l for which the field is not Hilbert-Speiser for l. That is let Kn = Q(ζn) where
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ζn is a primitive nth root of unity. Note without loss of generality we may assume
n 6≡ 2 mod 4 as if n ≡ 2 mod 4 then Kn = Kn

2
.

For Kn the ring of algebraic integers is Z[ζn] which we denote by On. The class
number of an algebraic number field K is denoted by hK and for Kn is denoted by
hn. In light of Theorem 1.0 to accomplish our goal it suffices to prove the following
theorem, the main result for this article.

Theorem 1.2 (Main Theorem). Let Kn be as above and assume hn = 1. One
may find an explicit prime l so that Vl,n = (On/lOn)∗/Im(O∗

n) does not have

exponent dividing (l−1)2

2 . Hence for every cyclotomic field one may find an explicit
prime l so that there is a tame degree l field extension with nontrivial Galois module
structure.

We begin our study by taking care of two special cases. We first treat the case
hn 6= 1 by providing some details about condition (i) of Theorem 1.0. Using [6] one
can show any field of class number not equal to one has a quadratic extension which
does not posses a relative integral basis. Thus we have the following restating this
in our language.

Theorem 1.3. Let K be an algebraic number field with class number hK 6= 1.
Then K is not Hilbert-Speiser for l = 2.

While this result is decisive for fields of class number not equal to 1, we must note
much more recent studies of Galois Module Theory have been made. For example
the work of Fröhlich, [3], gives an excellent account of Galois module classes. The
results in [1] which we state below provide an important Galois module structure
result for extensions of cyclotomic fields.

Next we treat the case when n is prime. We note for this case one need not make
any assumptions on the class number.

Propostion 1.4. For n > 3 prime one has Kn is not Hilbert-Speiser for n.

Proof. Let n > 3 be prime. We show Vn = (On/nOn)∗/Im(On) is an elementary
abelian group of exponent n, from which the result follows from Theorem 1.0 (ii).
As n totally ramifies, we have (On/lOn)∗ ∼= Cn−1×C

n−2
n , and from Dirichlet’s unit

theorem we have O∗
n
∼= 〈−ζn〉 × 〈ǫ1〉 × · · · × 〈ǫ(n−3)/2〉, where the ǫi are a system

of fundamental units. Since ζn is not congruent to 1 mod l, V n−1
n

∼= Cl−2−j
n for

some integer j with 1 ≤ j ≤ (n− 1)/2. Now as n ≥ 5, we have V n−1
n is a nontrivial

elementrary abelian group of exponent n. �

Notes: 1. Proposition 1.4 is essentially [10, Proposition 15]. 2. In the case both
n is prime and n ∤ h+

n , where h+
n is the class number of the maximal real subfield

of Kn one may in fact explicitly compute T (Z[ζn]Cn). See [11, Theorem 1]. 3. For
applications to Hopf orders in Z[ζn]Cn when n is a prime power, see [12].

So, we need to only consider the case where either n = 3 or n is composite so
that hn = 1. This reduces the question to the following list. (See [16,Theorem 11.1],
for example, for a listing of those cyclotomic fields Kn with n 6≡ 2 mod 4 so that
hn = 1.)

5



List 1.5. Let n not be congruent to 2 mod 4 and not a prime greater than 3. Then
hn = 1 only if n = 3, 4, 8, 9, 12, 15, 16, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 40,
44, 45, 48, 60, or 84.

In the next section we will provide several primes l for each n in this list so that
Kn is not Hilbert-Speiser for l. That is for each n we will exhibit several primes l

so that Vl,n does not have exponent dividing (l−1)2

2
. This will complete the proof of

the theorem.
Before beginning we introduce the important related result of Chan and Lim,

[1]. For any Galois extension of number fields L/K with Galois group G one may
define the associated order by AL/K = {α ∈ K[G]|αOL ⊆ OL}. Then a classical
result is L/K is at most tamely ramified if and only if AL/K = OK [G]. So, one may
generalize the notion of trivial Galois module structure to say a Galois extension of
number fields L/K has trivial Galois module structure if OL is a free AL/K-module.
Chan and Lim show, [1], any Galois extension L/K with L and K both cyclotomic
fields has a trivial Galois module structure. Hence, for the primes l for which we
detect the existence of degree l extensions with nontrivial Galois module structure
we know these exension fields are not cyclotomic fields.

Section 2: Cyclotomic Units and

Nontrivial Galois Module Structure

To complete the proof of Theorem 1.2 it suffices to exhibit a prime l for each n

in List 1.5 so that Vl,n
∼= (On/lOn)∗/Im(O∗

n) is not of exponent dividing (l−1)2

2 .
Of course the issues are finding an l that splits nicely in On; then representing the
quotient On/lOn in a way amenable to computation; then finding the image of the
units of On in this representation; then last developing a computer algorithm to
solve the problem. We will not use the results in [5] here, however we must note
our method is somewhat analogous.

The first two parts of our task are completed by the following lemma. Let Fl

denote the field of l elements and Fl[x] its polynomial ring. Further let φ be the
usual Euler φ-function.

Lemma 2.0. For an l that does not divide n let f be minimal such that n|k :=
lf − 1, and g = φ(n)/f . Then (On/lOn)∗ ∼= (Z/kZ)g, where the isomorphism is
explicitly given by the following maps κ, λi, and µi:

κ : On/lOn −→

g∏

i=1

On/PiOn (2.0)

a+ lOn 7→ (a+ PiOn)i=1,...,g,

where each Pi is an ideal generated by two generators Pi = 〈l, pi〉, and pi is a
polynomial of degree f , which we obtain by factoring the n-th cyclotomic polynomial
Φn(x) as a polynomial in Fl[x] into irreducible polynomials.

λi : On/PiOn → Fl[x]/(pi) (2.1)
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a+ PiOn 7→ a+ (pi)

for i = 1, . . . , g.

µi : (Fl[x]/(pi))
∗ → Z/kZ (2.2)

a+ (pi) 7→ b mod k.

where a+ (pi) = wb
i and wi is a (fixed) generator of the cyclic group (Fl[x]/(pi))

∗.

Proof. The isomorphism (2.0) follows by [16, Theorem 2.13], which describes the
splitting behaviour of a prime inKn and the Chinese remainder theorem for ideals in
an algebraic number field. The isomorphism (2.1) can be proved straightforwardly
as On

∼= Z[x]/(Φn(x)) and (2.2) is the well known fact that the multiplicative group
of a finite field is cyclic. �

The larger issue is the units. We show first that it is sufficient to consider
cyclotomic units. We introduce some mostly standard notation at this point: Let
Wn denote the roots of unity in On. Let En denote the units of On. Last let E+

n

denote the units in the ring of algebraic integers of the maximal real subfield of Kn.
Then we have [En : WnE

+
n ] = Q where Q equals one if n is a prime power and

equals two otherwise. For details see chapters 4 and 8 of [16].
Let C+

n denote the cyclotomic units in E+
n . Let h+

n denote the class number of
the maximal real subfield of Kn. Next we have the following result due to Sinnott
[14] stated only for what we are considering here.

Theorem 2.1 [14]. The group E+
n /C

+
n is finite and [E+

n : C+
n ] = 2bh+

n . The integer
b is defined by b = 0 if r = 1 and b = 2r−2 + 1 − r if r > 1, where r is the number
of distinct primes dividing n.

This theorem has two immediate corollaries which we prove.

Corollary 2.2. If hn = 1 then E+
n = C+

n .

Proof. For each Kn of class number one three or fewer primes divide n. Hence b = 0
in Theorem 2.1. �

Corollary 2.3. For each n of List 1.4 we have Cn = En.

Proof. Note first that E+
n = C+

n by Corollary 2.2 and obviously we have Cn ⊇
WnC

+
n . If n is a prime power we have Q = 1 and therefore En = WnE

+
n =

WnC
+
n = Cn.

In the case Q = 2 the result is proven when we show that [Cn : WnC
+
n ] > 1.

This follows because 1 − ζn ∈ Cn but ζν
n(1 − ζn) = ζν

n − ζν+1
n 6∈ R ⊇ C+

n for each
ν = 1, . . . , n. (A necessary condition for ζν

n − ζµ
n ∈ R is 2(ν + µ) = n which is

impossible for µ = ν + 1 as n 6≡ 2 mod 4.) �

From this it follows we may consider just cyclotomic units. That is, the group
of cyclotomic units generates the full group of units. From [2] we have an explicit
description of a basis of the cyclotomic units in Kn.
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Proposition 2.4 [2]. A basis of the group of cyclotomic units is explicitely given
as a subset of the set

{
1 − ζa

q

1 − ζq
| q|n, 1 < a < q, (a, q) = 1, q is a prime power}

∪{1 − ζa
d | d|n, 1 < a < d, (a, d) = 1, d is not a prime power} (2.3)

∪{±ζn}.

An algorithm which computes a basis according to [2] is implemented in SIMATH
[13]. Now we work toward developing an algorithm to compute Vl,n. We will need
the following lemma.

Lemma 2.5. Let k, s, g ∈ N and G = (Z/kZ)g. Further let H = 〈v1, . . . , vg〉
be a subgroup of G which is generated by the g-tuples vi = (v1,i, . . . , vg,i) and
V = (vi,j)1≤i,j≤g the g × g-matrix which is made up by the vi. Then we have:

If there exists a prime p such that p|k, p| det(V ) and p 6 |s, then the exponent of
G/H does not divide s.

Proof. The exponent of G/H does not divide s means that ∃w ∈ G, such that
sw 6∈ H, or – more concretely – ∃w ∈ G with ∀α := (α1, . . . , αg) ∈ Zg, such that

g∑

i=1

αivi 6≡ sw mod k. (2.4)

A sufficient condition for (2.4) is obviously that there exists a prime p|k with

g∑

i=1

αivi 6≡ sw mod p. (2.5)

The only primes p which are in question are those p with p 6 | s, otherwise (0, . . . , 0)
would be a solution. For those p the number s−1 is well defined mod p, and we
obtain from (2.5) that we have to show: ∃w ∈ G with αs−1V 6≡ w mod p. So in
fact we have to show that the endomorphism

ϕ : (Z/pZ)g → (Z/pZ)g

x 7→ xs−1V

is not surjective, which is equivalent to det(s−1V ) ≡ 0 mod p, or p| det(V ). �

Remark 2.6 Of course the subgroupH can be generated by fewer then g vectors.
Then we obtain the lemma by dropping the condition p| det(V ).

Remark 2.7 Note that we do not need to factor k in order to check whether a
p as required in Lemma 2.5 exists. We can use the following algorithm:
i) Let c := gcd(k, det(V )).
ii) do t := c; c := c/ gcd(c, s) while c 6= t.

8



iii) if c = 1 then 6 ∃p else ∃p.

Except for the proof that the group of cyclotomic units already is the full unit
group we have not used the fact that hn = 1. So we define V cyc

l,n
∼= (On/lOn)∗/Im(Cn)

where we have replaced the full unit group O∗
n by the group of cyclotomic units Cn.

With the results of Lemmata 2.0 and 2.5 we obtain the following algorithm.

Algorithm 2.8 If for a given pair (l, n) with l 6 |n the following algorithm returns
“yes”, then the exponent of V cyc

l,n is not dividing (l − 1)2/2.

i) Factor the n-th cyclotomic polynomial Φn modulo l. Let L = {p1, . . . , pg} be
the list of irreducible factors of Φn. Let further f be the degree of one of the pi

(which is in fact the same for all pi) and set k = lf − 1.

ii) For each polynomial pi ∈ L determine a generator wi of the finite field Fl[x]/(pi(x)).

iii) Determine a (finite) set B = {b1, . . . , bs} of generators of cyclotomic units. This
may be done e.g. with the function lcyubas() of SIMATH, [13].

iv) Compute the matrix V ∈ (Z/kZ)s×g where each entry vi,j of V is given by solving
the discrete logarithm problem bi ≡ w

vi,j

j mod pj in Fl[x].

v) If s > g eleminate rows of V by Gauss elimination over the ring Z/kZ, until V is
a square matrix. If s < g generate a square matrix by adding zero rows (or set
det(V ) = 0 in the next step).

vi) Check (via Remark 2.7) if there exists a prime p such that p| gcd(det(V ), k) and
p 6 | ((l − 1)2/2). If such a p exists return “yes”.

This algorithm has been implemented and is available as function iscynfHS()

in Version 4.5 of SIMATH.

For each n in List 1.5 we now in fact exhibit several primes l for which V cyc
l,n is

not of exponent dividing (l−1)2

2 . For these n one has V cyc
l,n = Vl,n as hn = 1. So,

we provide a table obtained using the above alogrithm that for each n in List 1.5
we have Kn = Q(ζn) and for the l associated to n we have that there is a tame
Galois field extension L/Kn of degree l for which l splits in Kn/Q and the extension
L/Kn is so that L/Kn is not Hilbert-Speiser, i.e. does not have a normal integral
basis. This together with Theorem 1.3 and Proposition 1.4 proves Theorem 1.2.
We note the algorithm presented applies to those n treated in Proposition 1.4 also.
For example for n = 7 one obtains the list l = 5, 11, 13, 17, 23, 37, 41, 53, 67, 79,
83, 97. Of course, these l split whereas 7 totally ramifies in K7.
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Table 2.9
n l

3 17, 29, 41, 53, 59, 71, 83, 89
4 11, 19, 23, 43, 47, 59, 67, 71, 79, 83
8 5, 11, 13, 19, 23, 29, 37, 43, 47, 53, 59, 61, 67, 71, 79, 83
9 5, 7, 11, 13, 17, 31, 43, 53, 61, 67, 71, 79, 89, 97
12 11, 17, 19, 23, 29, 41, 43, 47, 53, 59, 67, 71, 79, 83, 89
15 7, 11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 73, 79, 89
16 3, 5, 11, 13, 19, 23, 29, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 89
20 7, 11, 13, 17, 19, 23, 29, 37, 43, 47, 53, 59, 67, 71, 73, 79, 89
21 5, 11, 13, 17, 29, 37, 41, 67, 71, 79, 83, 97
24 5, 11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 53, 59, 61, 67, 71, 79, 83, 89
25 7, 11, 31, 43
27 17, 19, 37, 53, 73
28 3, 5, 11, 13, 17, 37, 41, 43, 53, 71, 83, 97
32 3, 5, 7, 17, 23, 41, 47, 71, 73, 79
33 5, 23, 43, 89
35 3, 11, 13, 29, 41, 43
36 5, 7, 11, 13, 17, 19, 53, 61, 71, 89, 97
40 3, 7, 11, 13, 17, 19, 23, 29, 37, 43, 47, 53, 59, 61, 67, 71, 73, 79, 89
44 3, 5, 23, 43, 67
45 11, 17, 19, 31, 37, 53, 61, 71, 73, 89
48 5, 11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 53, 59, 71, 73, 79, 89
60 7, 11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 73, 79, 89
84 5, 11, 13, 17, 29, 37, 41, 43, 71, 83, 97
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