22 research outputs found

    Effects of Strain on the valence band structure and exciton-polariton energies in ZnO

    Full text link
    ABSTRACT The uniaxial stress dependence of the band structure and the exciton-polariton transitions in wurtzite ZnO is thoroughly studied using modern first-principles calculations based on the HSE+G0W0 approach, k p modeling using the deformation potential framework, and polarized photoluminescence measurements. The ordering of the valence bands (A(G7), B(G9), C(G7)) is found to be robust even for high uniaxial and biaxial strains. Theoretical results for the uniaxial pressure coefficients and splitting rates of the A, B, and C valence bands and their optical transitions are obtained including the effects of the spin-orbit interaction. The excitonic deformation potentials are derived and the stress rates for hydrostatic pressure are determined based on the results for uniaxial and biaxial stress. In addition, the theory for the stress dependence of the exchange interaction and longitudinal-transversal splitting of the exciton-polaritons is developed using the basic exciton functions of the quasi-cubic approximation and taking the interaction between all exciton states into account. It is shown that the consideration of these effects is crucial for an accurate description of the stress dependence of the optical spectra in ZnO. The theoretical results are compared to polarized photoluminescence measurements of different ZnO substrates as function of uniaxial pressure and experimental values reported in the literature demonstrating an excellent agreement with the computed pressure coefficient

    Phonon pressure coefficients and deformation potentials of wurtzite AlN determined by uniaxial pressure-dependent Raman measurements

    Full text link
    © 2014 American Physical Society. We studied bulk crystals of wurtzite AlN by means of uniaxial pressure-dependent Raman measurements. As a result, we derive the phonon pressure coefficients and deformation potentials for all zone center optical phonon modes. For the A1 and E1 modes, we further experimentally determined the uniaxial pressure dependence of their longitudinal optical-transverse optical (LO-TO) splittings. Our experimental approach delivers new insight into the large variance among previously reported phonon deformation potentials, which are predominantly based on heteroepitaxial growth of AlN and the ball-on-ring technique. Additionally, the measured phonon pressure coefficients are compared to their theoretical counterparts obtained by density functional theory implemented in the siesta package. Generally, we observe a good agreement between the calculated and measured phonon pressure coefficients but some particular Raman modes exhibit significant discrepancies similar to the case of wurtzite GaN and ZnO, clearly motivating the presented uniaxial pressure-dependent Raman measurements on bulk AlN crystals

    Phonon Raman spectra of colloidal CdTe nanocrystals: effect of size, non-stoichiometry and ligand exchange

    Get PDF
    Resonant Raman study reveals the noticeable effect of the ligand exchange on the nanocrystal (NC) surface onto the phonon spectra of colloidal CdTe NC of different size and composition. The oleic acid ligand exchange for pyridine ones was found to change noticeably the position and width of the longitudinal optical (LO) phonon mode, as well as its intensity ratio to overtones. The broad shoulder above the LO peak frequency was enhanced and sharpened after pyridine treatment, as well as with decreasing NC size. The low-frequency mode around 100 cm-1 which is commonly related with the disorder-activated acoustical phonons appears in smaller NCs but is not enhanced after pyridine treatment. Surprisingly, the feature at low-frequency shoulder of the LO peak, commonly assigned to the surface optical phonon mode, was not sensitive to ligand exchange and concomitant close packing of the NCs. An increased structural disorder on the NC surface, strain and modified electron-phonon coupling is discussed as the possible reason of the observed changes in the phonon spectrum of ligand-exchanged CdTe NCs

    The role of complex cues in social and reproductive plasticity

    Get PDF
    Phenotypic plasticity can be a key determinant of fitness. The degree to which the expression of plasticity is adaptive relies upon the accuracy with which information about the state of the environment is integrated. This step might be particularly beneficial when environments, e.g. the social and sexual context, change rapidly. Fluctuating temporal dynamics could increase the difficulty of determining the appropriate level of expression of a plastic response. In this review, we suggest that new insights into plastic responses to the social and sexual environment (social and reproductive plasticity) may be gained by examining the role of complex cues (those comprising multiple, distinct sensory components). Such cues can enable individuals to more accurately monitor their environment in order to respond adaptively to it across the whole life course. We briefly review the hypotheses for the evolution of complex cues and then adapt these ideas to the context of social and sexual plasticity. We propose that the ability to perceive complex cues can facilitate plasticity, increase the associated fitness benefits and decrease the risk of costly ‘mismatches’ between phenotype and environment by (i) increasing the robustness of information gained from highly variable environments, (ii) fine-tuning responses by using multiple strands of information and (iii) reducing time lags in adaptive responses. We conclude by outlining areas for future research that will help to determine the interplay between complex cues and plasticity

    Titanium-assisted growth of silica nanowires: From surface-matched to free-standing morphologies

    Full text link
    We report on an oxide-assisted growth technique for silica nanowires which allows tuning the growth from surface-matched nanowires to free-standing morphologies based on growth control by Ti in the role of a catalyst and surfactant. Using an adjustable Ti concentration, we grew silica nanowires with lengths ranging from 100nm up to several millimetres whose defect chemistry was analysed by electron microscopy tools, monochromatic cathodoluminescence imaging and time resolved photoluminescence spectroscopy. The knowledge of the luminescence properties and the related defect occurrence along with their spatial distribution is pivotal for advancing silica nanowire growth in order to realize successful device designs based on self-assembled Si/SiOx nanostructures. We demonstrate a core-shell structure of the grown nanowires with a highly luminescent 150nm thick shell and outstandingly fast decaying dynamics (≈1ns) for glass-like materials. The conjunction of the observed efficient and stable luminescences with their attributed decaying behaviours suggests applications for silica nanowires such as active and passive optical interconnectors and white light phosphors. The identification of a time domain difference for the spectral regime from 2.3 to 3.3eV, within the confined spatial dimensions of a single nanowire, is very promising for future, e.g.data transmission applications, employing silica nanowires which exhibit achievable compatibility with commonly applied silicon-based electronics. A qualitative growth model based on silica particle diffusion and Ti-assisted seed formation is developed for the various types of segregated silica nanowires which extends commonly assumed oxide-assisted growth mechanisms. © IOP Publishing Ltd

    Phonon deformation potentials in wurtzite GaN and ZnO determined by uniaxial pressure dependent Raman measurements

    Get PDF
    We report the phonon deformation potentials of wurtzite GaN and ZnO for all zone center optical phonon modes determined by Raman measurements as a function of uniaxial pressure. Despite all the structural and optical similarities between these two material systems, the pressure dependency of their vibrational spectra exhibits fundamental distinctions, which is attributed to their different bond ionicities. In addition, the LO-TO splitting of the A1 and E1 phonon modes is analyzed which yields insight into the uniaxial pressure dependency of Born's transverse effective charge e T*. © 2011 American Institute of Physics

    Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers

    Full text link
    ZnO single crystals, epilayers, and nanostructures often exhibit a variety of narrow emission lines in the spectral range between 3.33 and 3.35 eV which are commonly attributed to deeply bound excitons (Y lines). In this work, we present a comprehensive study of the properties of the deeply bound excitons with particular focus on the Y0 transition at 3.333 eV. The electronic and optical properties of these centers are compared to those of the shallow impurity related exciton binding centers (I lines). In contrast to the shallow donors in ZnO, the deeply bound exciton complexes exhibit a large discrepancy between the thermal activation energy and localization energy of the excitons and cannot be described by an effective mass approach. The different properties between the shallow and deeply bound excitons are also reflected by an exceptionally small coupling of the deep centers to the lattice phonons and a small splitting between their two electron satellite transitions. Based on a multitude of different experimental results including magnetophotoluminescence, magnetoabsorption, excitation spectroscopy (PLE), time resolved photoluminescence (TRPL), and uniaxial pressure measurements, a qualitative defect model is developed which explains all Y lines as radiative recombinations of excitons bound to extended structural defect complexes. These defect complexes introduce additional donor states in ZnO. Furthermore, the spatially localized character of the defect centers is visualized in contrast to the homogeneous distribution of shallow impurity centers by monochromatic cathodoluminescence imaging. A possible relation between the defect bound excitons and the green luminescence band in ZnO is discussed. The optical properties of the defect transitions are compared to similar luminescence lines related to defect and dislocation bound excitons in other II-VI and III-V semiconductors. © 2011 American Physical Society

    Measurement and modeling of the effective thermal conductivity of sintered silver pastes

    No full text
    The effective thermal conductivity of sintered porous pastes of silver is modeled through two theoretical methods and measured by means of three experimental techniques. The first model is based on the differential effective medium theory and provides a simple analytical description considering the air\u3cbr/\u3epores like ellipsoidal voids of different sizes, while the second one arises from the analysis of the scanning-electron-microscope images of the paste cross-sections through the finite element method. The predictions of both approaches are consistent with each other and show that the reduction of the\u3cbr/\u3ethermal conductivity of porous pastes can be minimized with spherical pores and maximized with pancake-shaped ones, which are the most efficient to block the thermal conducting pathways. A thermal conductivity of 151.6 W/m K is numerically determined for a sintered silver sample with 22% of porosity.\u3cbr/\u3eThis thermal conductivity agrees quite well with the one measured by the Lateral Thermal Interface Material Analysis for a suspended sample and matches, within an experimental uncertainty smaller than 16%, with the values obtained by means of Raman thermometry and the 3\omega technique, for two samples buried in a silicon chip. The consistence between our theoretical and experimental results demonstrates the good predictive performance of our theoretical models to describe the thermal behavior of porous thermal interface materials and to guide their engineering with a desired thermal conductivity

    Nanoscale thermal imaging of dissipation in quantum systems

    Get PDF
    Energy dissipation is a fundamental process governing the dynamics of physical, chemical, and biological systems. It is also one of the main characteristics distinguishing quantum and classical phenomena. In condensed matter physics, in particular, scattering mechanisms, loss of quantum information, or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Despite its vital importance the microscopic behavior of a system is usually not formulated in terms of dissipation because the latter is not a readily measureable quantity on the microscale. Although nanoscale thermometry is gaining much recent interest, the existing thermal imaging methods lack the necessary sensitivity and are unsuitable for low temperature operation required for study of quantum systems. Here we report a superconducting quantum interference nano-thermometer device with sub 50 nm diameter that resides at the apex of a sharp pipette and provides scanning cryogenic thermal sensing with four orders of magnitude improved thermal sensitivity of below 1 {\mu}K/Hz1/2. The non-contact non-invasive thermometry allows thermal imaging of very low nanoscale energy dissipation down to the fundamental Landauer limit of 40 fW for continuous readout of a single qubit at 1 GHz at 4.2 K. These advances enable observation of dissipation due to single electron charging of individual quantum dots in carbon nanotubes and reveal a novel dissipation mechanism due to resonant localized states in hBN encapsulated graphene, opening the door to direct imaging of nanoscale dissipation processes in quantum matter.Comment: Submitted to Natur
    corecore