12 research outputs found

    Diet/lifestyle and risk of diabetes and glycemic traits: a Mendelian randomization study

    No full text
    Abstract Background Observational studies have demonstrated diet/lifestyle play roles in development of type 2 diabetes (T2DM); however, it remains unclear whether these relationships are causal. Methods A two-sample MR approach was used to examine the causal effect of diet/lifestyle upon risk of T2DM and glycemic traits. Results The protein intake-increasing allele C of FTO was significant associated with higher risk of T2DM (Beta ± SE = 0.104 ± 0.014, P = 4.40 × 10− 11), higher level of HOMA-IR (Beta ± SE = 0.016 ± 0.004, P = 9.55 × 10− 5), HOMA-B (Beta ± SE = 0.008 ± 0.003, P = 0.020). Using MR analyses, increased protein intake was causally associated with an increased risk of T2DM (Beta ± SE = 0.806 ± 0.260, P = 0.002). In addition, smoking cessation was causally associated with increased levels of glycemic traits such as HOMA-IR (Beta ± SE = 0.165 ± 0.072, P = 0.021), fasting insulin (Beta ± SE = 0.132 ± 0.066, P = 0.047) and fasting glucose (Beta ± SE = 0.132 ± 0.064, P = 0.039). Conclusions These results provide evidence supporting a causal role for higher protein intake and smoking cession in T2DM. Our study provides further rationale for individuals at risk for diabetes to keep healthy lifestyle

    Arnold–Chiari malformation type I and the posterior dislocation of the odontoid process aggravate prolonged weaning in a patient with severe viral pneumonia: a case report

    No full text
    BACKGROUND: Prolonged and difficult weaning is associated with higher rates of complications and mortality. Therefore, it is important to identify the associated factors. CASE PRESENTATION: We describe our experience with a 37-year-old man diagnosed with severe viral pneumonia (influenza A). He presented with acute respiratory failure type I on admission. During intubation, his blood pressure and heart rate decreased, and epinephrine and norepinephrine were administered. Although his clinical condition improved 8 days after intensive care unit (ICU) admission, he experienced difficulty weaning. He remained conscious but had a poor spontaneous cough with sputum production and weak limb muscle strength. His cough reflex was absent during bronchoscopic sputum suction, and he used abdominal breathing during the T-tube test. Magnetic resonance imaging revealed an Arnold–Chiari malformation type I, posterior dislocation of the odontoid process, and syringomyelia, with compression and deformation of the medulla and high cervical cord. The patient was successfully weaned from the ventilator at 20 days after ICU admission. CONCLUSIONS: Arnold–Chiari malformation type I and posterior dislocation of the odontoid process, which aggravate medullary compression and increase the risk of cervical nerve injury, might be a rare factor affecting prolonged weaning in critical illness

    Unfractionated heparin ameliorates pulmonary microvascular endothelial barrier dysfunction via microtubule stabilization in acute lung injury

    No full text
    Abstract Background Endothelial barrier dysfunction is central to the pathogenesis of sepsis-associated acute lung injury (ALI). Microtubule (MT) dynamics in vascular endothelium are crucial for the regulation of endothelial barrier function. Unfractionated heparin (UFH) possesses various biological activities, such as anti-inflammatory activity and endothelial barrier protection during sepsis. Methods Here, we investigated the effects and underlying mechanisms of UFH on lipopolysaccharide (LPS)-induced endothelial barrier dysfunction. C57BL/6 J mice were randomized into vehicle, UFH, LPS and LPS + UFH groups. Intraperitoneal injection of 30 mg/kg LPS was used to induce sepsis. Mice in the LPS + UFH group received intravenous UFH 0.5 h prior to LPS injection. Human pulmonary microvascular endothelial cells (HPMECs) were cultured for analyzing the effects of UFH on LPS-induced and nocodazole-induced hyperpermeability, F-actin remodeling, and LPS-induced p38 MAPK activation. Results UFH pretreatment significantly attenuated LPS-induced pulmonary histopathological changes, and increased the lung W/D ratio and Evans blue accumulation in vivo. Both in vivo and in vitro studies showed that UFH pretreatment blocked the LPS-induced increase in guanine nucleotide exchange factor (GEF-H1) expression and myosin phosphatase target subunit 1 (MYPT1) phosphorylation, and microtubule (MT) disassembly in LPS-induced ALI mouse model and human pulmonary microvascular endothelial cells (HPMECs). These results suggested that UFH ameliorated LPS-induced endothelial barrier dysfunction by inhibiting MT disassembly and GEF-H1 expression. In addition, UFH attenuated LPS-induced hyperpermeability of HPMECs and F-actin remodeling. In vitro, UFH pretreatment inhibited LPS-induced increase in monomeric tubulin expression and decrease in tubulin polymerization and acetylation. Meanwhile, UFH ameliorates nocodazole-induced MTs disassembly and endothelial barrier dysfunction.Additionally, UFH decreased p38 phosphorylation and activation, which was similar to the effect of the p38 MAPK inhibitor, SB203580. Conclusions UFH exert its protective effects on pulmonary microvascular endothelial barrier dysfunction via microtubule stabilization and is associated with the p38 MAPK pathway

    Spatiotemporal Transmission Model to Simulate an Interregional Epidemic Spreading

    No full text
    Infectious disease spread is a spatiotemporal process with significant regional differences that can be affected by multiple factors, such as human mobility and manner of contact. From a geographical perspective, the simulation and analysis of an epidemic can promote an understanding of the contagion mechanism and lead to an accurate prediction of its future trends. The existing methods fail to consider the mutual feedback mechanism of heterogeneities between the interregional population interaction and the regional transmission conditions (e.g., contact probability and the effective reproduction number). This disadvantage oversimplifies the transmission process and reduces the accuracy of the simulation results. To fill this gap, a general model considering the spatiotemporal characteristics is proposed, which includes compartment modeling of population categories, flow interaction modeling of population movements, and spatial spread modeling of an infectious disease. Furthermore, the correctness of a theoretical hypothesis for modeling and prediction accuracy of this model was tested with a synthetic data set and a real-world COVID-19 data set in China, respectively. The theoretical contribution of this article was to verify that the interplay of multiple types of geospatial heterogeneities dramatically influences the spatial spread of infectious disease. This model provides an effective method for solving infectious disease simulation problems involving dynamic, complex spatiotemporal processes of geographical elements, such as optimization of lockdown strategies, analyses of the medical resource carrying capacity, and risk assessment of herd immunity from the perspective of geography. Key Words: geospatial heterogeneities, health geography, interregional population interaction, spatiotemporal analysis, transmission modeling.</p

    Large HBV Surface Protein-Induced Unfolded Protein Response Dynamically Regulates p27 Degradation in Hepatocellular Carcinoma Progression

    No full text
    Up to 50% of hepatocellular carcinoma (HCC) is caused by hepatitis B virus (HBV) infection, and the surface protein of HBV is essential for the progression of HBV-related HCC. The expression of large HBV surface antigen (LHB) is presented in HBV-associated HCC tissues and is significantly associated with the development of HCC. Gene set enrichment analysis revealed that LHB overexpression regulates the cell cycle process. Excess LHB in HCC cells induced chronic endoplasmic reticulum (ER) stress and was significantly correlated with tumor growth in vivo. Cell cycle analysis showed that cell cycle progression from G1 to S phase was greatly enhanced in vitro. We identified intensive crosstalk between ER stress and cell cycle progression in HCC. As an important regulator of the G1/S checkpoint, p27 was transcriptionally upregulated by transcription factors ATF4 and XBP1s, downstream of the unfolded protein response pathway. Moreover, LHB-induced ER stress promoted internal ribosome-entry-site-mediated selective translation of p27, and E3 ubiquitin ligase HRD1-mediated p27 ubiquitination and degradation. Ultimately, the decrease in p27 protein levels reduced G1/S arrest and promoted the progress of HCC by regulating the cell cycle

    Nanoparticles exhibiting virus-mimic surface topology for enhanced oral delivery

    No full text
    Abstract The oral delivery of nano-drug delivery systems (Nano-DDS) remains a challenge. Taking inspirations from viruses, here we construct core–shell mesoporous silica nanoparticles (NPs, ~80 nm) with virus-like nanospikes (VSN) to simulate viral morphology, and further modified VSN with L-alanine (CVSN) to enable chiral recognition for functional bionics. By comparing with the solid silica NPs, mesoporous silica NPs and VSN, we demonstrate the delivery advantages of CVSN on overcoming intestinal sequential barriers in both animals and human via multiple biological processes. Subsequently, we encapsulate indomethacin (IMC) into the nanopores of NPs to mimic gene package, wherein the payloads are isolated from bio-environments and exist in an amorphous form to increase their stability and solubility, while the chiral nanospikes multi-sited anchor and chiral recognize on the intestinal mucosa to enhance the penetrability and ultimately improve the oral adsorption of IMC. Encouragingly, we also prove the versatility of CVSN as oral Nano-DDS

    Nutritional practice in critically ill COVID-19 patients: A multicenter ambidirectional cohort study in Wuhan and Jingzhou.

    No full text
    BACKGROUND AND OBJECTIVES: The novel coronavirus disease (COVID-19) epidemic is spreading all over the world. With the number of cases increasing rapidly, the epidemiological data on the nutritional practice is scarce. In this study, we aim to describe the clinical characteristics and nutritional practice in a cohort of critically ill COVID-19 patients. METHODS AND STUDY DESIGN: This is a multicenter, ambidirectional cohort study conducted at 11 hospitals in Hubei Province, China. All eligible critical COVID-19 patients in the study hospital intensive care units at 00:00, March 6th, 2020, were included. Data collection was performed via written case report forms. RESULTS: A total of 44 patients were identified and enrolled, of whom eight died during the 28-day outcome follow- up period. The median interval between hospital admission and the study day was 24 (interquartile range, 13- 26) days and 52.2% (23 of 44) of patients were on invasive mechanical ventilation. The median nutrition risk in critically ill (mNUTRIC) score was 3 (interquartile range, 2-5) on the study day. During the enrolment day, 68.2% (30 of 44) of patients received enteral nutrition (EN), while 6.8% (3 of 44) received parenteral nutrition (PN) alone. Nausea and aspiration were uncommon, with a prevalence of 11.4% (5 of 44) and 6.8% (3 of 44), respectively. As for energy delivery, 69.7% (23 of 33) of patients receiving EN and/or PN were achieving their prescribed targets. CONCLUSIONS: The study showed that EN was frequently applied in critical COVID-19 patients. Energy delivery may be suboptimal in this study requiring more attention
    corecore