323 research outputs found
Mirror-image relations in category learning
The discrimination of patterns that are mirror-symmetric counterparts of each other is difficult and requires substantial training. We explored whether mirror-image discrimination during expertise acquisition is based on associative learning strategies or involves a representational shift towards configural pattern descriptions that permit resolution of symmetry relations. Subjects were trained to discriminate between sets of unfamiliar grey-level patterns in two conditions, which either required the separation of mirror images or not. Both groups were subsequently tested in a 4-class category-learning task employing the same set of stimuli. The results show that subjects who had successfully learned to discriminate between mirror-symmetric counterparts were distinctly faster in the categorization task, indicating a transfer of conceptual knowledge between the two tasks. Additional computer simulations suggest that the development of such symmetry concepts involves the construction of configural, protoholistic descriptions, in which positions of pattern parts are encoded relative to a spatial frame of reference
Coarsening of graded local cohomology
Some criteria for graded local cohomology to commute with coarsening functors
are proven, and an example is given where graded local cohomology does not
commute with coarsening.Comment: minor correction
Acute glycogen synthase kinase-3 inhibition modulates human cardiac conduction
Glycogen synthase kinase 3 (GSK-3) inhibition has emerged as a potential therapeutic target for several diseases, including cancer. However, the role for GSK-3 regulation of human cardiac electrophysiology remains ill-defined. We demonstrate that SB216763, a GSK-3 inhibitor, can acutely reduce conduction velocity in human cardiac slices. Combined computational modeling and experimental approaches provided mechanistic insight into GSK-3 inhibition-mediated changes, revealing that decreased sodium-channel conductance and tissue conductivity may underlie the observed phenotypes. Our study demonstrates that GSK-3 inhibition in human myocardium alters electrophysiology and may predispose to an arrhythmogenic substrate; therefore, monitoring for adverse arrhythmogenic events could be considered
Affine modifications and affine hypersurfaces with a very transitive automorphism group
We study a kind of modification of an affine domain which produces another
affine domain. First appeared in passing in the basic paper of O. Zariski
(1942), it was further considered by E.D. Davis (1967). The first named author
applied its geometric counterpart to construct contractible smooth affine
varieties non-isomorphic to Euclidean spaces. Here we provide certain
conditions which guarantee preservation of the topology under a modification.
As an application, we show that the group of biregular automorphisms of the
affine hypersurface given by the equation
where acts transitively on the
smooth part reg of for any We present examples of such
hypersurfaces diffeomorphic to Euclidean spaces.Comment: 39 Pages, LaTeX; a revised version with minor changes and correction
Spin dynamics in molecular ring nanomagnets: Significant effect of acoustic phonons and magnetic anisotropies
The nuclear spin-lattice relaxation rate 1/T_1_ is calculated for magnetic
ring clusters by fully diagonalizing their microscopic spin Hamiltonians.
Whether the nearest-neighbor exchange interaction J is ferromagnetic or
antiferromagnetic, 1/T_1_ versus temperature T in ring nanomagnets may be
peaked at around k_B_T=|J| provided the lifetime broadening of discrete energy
levels is in proportion to T^3^. Experimental findings for ferromagnetic and
antiferromagnetic Cu^II^ rings are reproduced with crucial contributions of
magnetic anisotropies as well as acoustic phonons.Comment: 5 pages with 5 figures embedded, to be published in J. Phys. Soc.
Jpn. 75, No. 10 (2006
Chamber-specific transcriptional responses in atrial fibrillation
Atrial fibrillation (AF) is the most common cardiac arrhythmia, yet the molecular signature of the vulnerable atrial substrate is not well understood. Here, we delineated a distinct transcriptional signature in right versus left atrial cardiomyocytes (CMs) at baseline and identified chamber-specific gene expression changes in patients with a history of AF in the setting of end-stage heart failure (AF+HF) that are not present in heart failure alone (HF). We observed that human left atrial (LA) CMs exhibited Notch pathway activation and increased ploidy in AF+HF but not in HF alone. Transient activation of Notch signaling within adult CMs in a murine genetic model is sufficient to increase ploidy in both atrial chambers. Notch activation within LA CMs generated a transcriptomic fingerprint resembling AF, with dysregulation of transcription factor and ion channel genes, including Pitx2, Tbx5, Kcnh2, Kcnq1, and Kcnip2. Notch activation also produced distinct cellular electrophysiologic responses in LA versus right atrial CMs, prolonging the action potential duration (APD) without altering the upstroke velocity in the left atrium and reducing the maximal upstroke velocity without altering the APD in the right atrium. Our results support a shared human/murine model of increased Notch pathway activity predisposing to AF
THE STYLE OF LATE CENOZOIC DEFORMATION AT THE EASTERN FRONT OF THE CALIFORNIA COAST RANGES
The 1983 Coalinga earthquake occurred at the eastern boundary of the California Coast Ranges in response to northeast directed thrusting. Such movements over the past 2 Ma have produced Coalinga anticline by folding above the blind eastern tip of the Coalinga thrust zone. The 600-km length of the Coast Ranges boundary shares a common structural setting that involves westward upturn of Cenozoic and Cretaceou strata at the eastern front of the Coast Ranges and a major, southwest facing step in the basement surface beneath the western Great Valley. Like Coalinga anticline, Pliocene and Quaternary folding and faulting along the rest of the boundary also result from northeast-southwest compression acting nearly perpendicular to the strike of the San Andreas fault. We suggest that much of this deformation is related to active thrusts beneath the eastern Coast Ranges. The step in the basement surface beneath the Great Valley seems to have controlled the distribution of this deformation and the shape of the Coast Ranges boundary
Human cardiac pericytes are susceptible to SARS-CoV-2 infection
COVID-19 is associated with serious cardiovascular complications, with incompletely understood mechanism(s). Pericytes have key functions in supporting endothelial cells and maintaining vascular integrity. We demonstrate that human cardiac pericytes are permissive to SARS-CoV-2 infection in organotypic slice and primary cell cultures. Viral entry into pericytes is mediated by endosomal proteases, and infection leads to up-regulation of inflammatory markers, vasoactive mediators, and nuclear factor kappa-B-dependent cell death. Furthermore, we present evidence of cardiac pericyte infection in COVID-19 myocarditis patients. These data demonstrate that human cardiac pericytes are susceptible to SARS-CoV-2 infection and suggest a role for pericyte infection in COVID-19
- …