175 research outputs found

    Numerical methods for control-based continuation of relaxation oscillations

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordData Availability Statement: Data sharing is not applicable to this article, as no datasets were generated or analysed during the current study.Control-based continuation (CBC) is an experimental method that can reveal stable and unstable dynamics of physical systems. It extends the path-following principles of numerical continuation to experiments and provides systematic dynamical analyses without the need for mathematical modelling. CBC has seen considerable success in studying the bifurcation structure of mechanical systems. Nevertheless, the method is not practical for studying relaxation oscillations. Large numbers of Fourier modes are required to describe them, and the length of the experiment significantly increases when many Fourier modes are used, as the system must be run to convergence many times. Furthermore, relaxation oscillations often arise in autonomous systems, for which an appropriate phase constraint is required. To overcome these challenges, we introduce an adaptive B-spline discretisation that can produce a parsimonious description of responses that would otherwise require many Fourier modes. We couple this to a novel phase constraint that phase-locks control target and solution phase. Results are demonstrated on simulations of a slow-fast synthetic gene network and an Oregonator model. Our methods extend CBC to a much broader range of systems than have been studied so far, opening up a range of novel experimental opportunities on slow-fast systems.Engineering and Physical Sciences Research Council (EPSRC)European Union Horizon 2020Royal Academy of Engineering (RAE

    Numerical continuation in nonlinear experiments using local Gaussian process regression

    Get PDF
    Control-based continuation (CBC) is a general and systematic method to probe the dynamics of nonlinear experiments. In this paper, CBC is combined with a novel continuation algorithm that is robust to experimental noise and enables the tracking of geometric features of the response surface such as folds. The method uses Gaussian process regression to create a local model of the response surface on which standard numerical continuation algorithms can be applied. The local model evolves as continuation explores the experimental parameter space, exploiting previously captured data to actively select the next data points to collect such that they maximise the potential information gain about the feature of interest. The method is demonstrated experimentally on a nonlinear structure featuring harmonically coupled modes. Fold points present in the response surface of the system are followed and reveal the presence of an isola, i.e. a branch of periodic responses detached from the main resonance peak

    TMTDyn: A Matlab package for modeling and control of hybrid rigid-continuum robots based on discretized lumped systems and reduced-order models

    Get PDF
    A reliable, accurate, and yet simple dynamic model is important to analyzing, designing, and controlling hybrid rigid–continuum robots. Such models should be fast, as simple as possible, and user-friendly to be widely accepted by the ever-growing robotics research community. In this study, we introduce two new modeling methods for continuum manipulators: a general reduced-order model (ROM) and a discretized model with absolute states and Euler–Bernoulli beam segments (EBA). In addition, a new formulation is presented for a recently introduced discretized model based on Euler–Bernoulli beam segments and relative states (EBR). We implement these models in a Matlab software package, named TMTDyn, to develop a modeling tool for hybrid rigid–continuum systems. The package features a new high-level language (HLL) text-based interface, a CAD-file import module, automatic formation of the system equation of motion (EOM) for different modeling and control tasks, implementing Matlab C-mex functionality for improved performance, and modules for static and linear modal analysis of a hybrid system. The underlying theory and software package are validated for modeling experimental results for (i) dynamics of a continuum appendage, and (ii) general deformation of a fabric sleeve worn by a rigid link pendulum. A comparison shows higher simulation accuracy (8–14% normalized error) and numerical robustness of the ROM model for a system with a small number of states, and computational efficiency of the EBA model with near real-time performances that makes it suitable for large systems. The challenges and necessary modules to further automate the design and analysis of hybrid systems with a large number of states are briefly discussed

    TMTDyn: A Matlab package for modeling and control of hybrid rigid–continuum robots based on discretized lumped systems and reduced-order models

    Get PDF
    A reliable, accurate, and yet simple dynamic model is important to analyzing, designing, and controlling hybrid rigid–continuum robots. Such models should be fast, as simple as possible, and user-friendly to be widely accepted by the evergrowing robotics research community. In this study, we introduce two new modeling methods for continuum manipulators: a general reduced-order model (ROM) and a discretized model with absolute states and Euler–Bernoulli beam segments (EBA). In addition, a new formulation is presented for a recently introduced discretized model based on Euler–Bernoulli beam segments and relative states (EBR). We implement these models in a Matlab software package, named TMTDyn, to develop a modeling tool for hybrid rigid–continuum systems. The package features a new high-level language (HLL) text-based interface, a CAD-file import module, automatic formation of the system equation of motion (EOM) for different modeling and control tasks, implementing Matlab C-mex functionality for improved performance, and modules for static and linear modal analysis of a hybrid system. The underlying theory and software package are validated for modeling experimental results for (i) dynamics of a continuum appendage, and (ii) general deformation of a fabric sleeve worn by a rigid link pendulum. A comparison shows higher simulation accuracy (8–14% normalized error) and numerical robustness of the ROM model for a system with a small number of states, and computational efficiency of the EBA model with near real-time performances that makes it suitable for large systems. The challenges and necessary modules to further automate the design and analysis of hybrid systems with a large number of states are briefly discussed

    Inequities in life course criminal legal system sanctions: measuring cumulative involvement

    Get PDF
    Purpose: The impact of incarceration on health is well known. Yet, most studies measure incarceration alone and miss additional exposure to the criminal legal system over time. We evaluated adult criminal legal sanctions – inclusive of arrests, charges, probation, incarceration – from ages 18–35 and inequities by juvenile sanctions and race. Methods: Using the National Longitudinal Survey on Youth 1997, a nationally representative data set of adolescents followed into their mid-thirties (1997–2017), we calculated the mean cumulative count, or the average number of criminal legal events per person per study visit, stratified by juvenile sanctions and race. Results: Of 7024 participants, 1679 experienced 3,075 encounters. There were seven arrests, 30 charges, nine probation encounters, and 13 incarceration events /100 participants by age 35. Juvenile sanctions were most common for Black individuals. Among those experiencing juvenile sanctions, Black and White individuals had similar numbers of encounters, but Black individuals had more arrests and incarceration stays. For those without juvenile encounters, Black individuals had more encounters than White individuals. Conclusions: Research on health effects of criminal legal sanctions must consider encounters beyond incarceration and focus on life course trajectories and racial inequities

    Seatbelt use and risk of major injuries sustained by vehicle occupants during motor-vehicle crashes: A systematic review and meta-analysis of cohort studies

    Get PDF
    BackgroundIn 2004, a World Health Report on road safety called for enforcement of measures such as seatbelt use, effective at minimizing morbidity and mortality caused by road traffic accidents. However, injuries caused by seatbelt use have also been described. Over a decade after publication of the World Health Report on road safety, this study sought to investigate the relationship between seatbelt use and major injuries in belted compared to unbelted passengers.MethodsCohort studies published in English language from 2005 to 2018 were retrieved from seven databases. Critical appraisal of studies was carried out using the Scottish Intercollegiate Guidelines Network (SIGN) checklist. Pooled risk of major injuries was assessed using the random effects meta-analytic model. Heterogeneity was quantified using I-squared and Tau-squared statistics. Funnel plots and Egger's test were used to investigate publication bias. This review is registered in PROSPERO (CRD42015020309).ResultsEleven studies, all carried out in developed countries were included. Overall, the risk of any major injury was significantly lower in belted passengers compared to unbelted passengers (RR 0.47; 95%CI, 0.29 to 0.80; I-2=99.7; P=0.000). When analysed by crash types, belt use significantly reduced the risk of any injury (RR 0.35; 95%CI, 0.24 to 0.52). Seatbelt use reduces the risk of facial injuries (RR=0.56, 95% CI=0.37 to 0.84), abdominal injuries (RR=0.87; 95% CI=0.78 to 0.98) and, spinal injuries (RR=0.56, 95% CI=0.37 to 0.84). However, we found no statistically significant difference in risk of head injuries (RR=0.49; 95% CI=0.22 to 1.08), neck injuries (RR=0.69: 95%CI 0.07 to 6.44), thoracic injuries (RR 0.96, 95%CI, 0.74 to 1.24), upper limb injuries (RR=1.05, 95%CI 0.83 to 1.34) and lower limb injuries (RR=0.77, 95%CI 0.58 to 1.04) between belted and non-belted passengers.ConclusionIn sum, the risk of most major road traffic injuries is lower in seatbelt users. Findings were inconclusive regarding seatbelt use and susceptibility to thoracic, head and neck injuries during road traffic accidents. Awareness should be raised about the dangers of inadequate seatbelt use. Future research should aim to assess the effects of seatbelt use on major injuries by crash type

    Genome-wide data from medieval German Jews show that the Ashkenazi founder event pre-dated the 14th century

    Get PDF
    We report genome-wide data for 33 Ashkenazi Jews (AJ), dated to the 14th century, following a salvageexcavation at the medieval Jewish cemetery of Erfurt, Germany. The Erfurt individuals are geneticallysimilar to modern AJ and have substantial Southern European ancestry, but they show more variabilityin Eastern European-related ancestry than modern AJ. A third of the Erfurt individuals carried the samenearly-AJ-specific mitochondrial haplogroup and eight carried pathogenic variants known to affect AJtoday. These observations, together with high levels of runs of homozygosity, suggest that the Erfurtcommunity had already experienced the major reduction in size that affected modern AJ. However, theErfurt bottleneck was more severe, implying substructure in medieval AJ. Together, our results suggestthat the AJ founder event and the acquisition of the main sources of ancestry pre-dated the 14th centuryand highlight late medieval genetic heterogeneity no longer present in modern AJ
    • …
    corecore