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Abstract Control-based continuation (CBC) is an
experimental method that can reveal stable and unsta-
ble dynamics of physical systems. It extends the
path-following principles of numerical continuation to
experiments and provides systematic dynamical analy-
ses without the need for mathematical modelling. CBC
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has seen considerable success in studying the bifurca-
tion structure of mechanical systems. Nevertheless, the
method is not practical for studying relaxation oscilla-
tions. Large numbers of Fourier modes are required
to describe them, and the length of the experiment
significantly increases when many Fourier modes are
used, as the system must be run to convergence many
times. Furthermore, relaxation oscillations often arise
in autonomous systems, for which an appropriate phase
constraint is required. To overcome these challenges,
we introduce an adaptive B-spline discretisation that
can produce a parsimonious description of responses
that would otherwise require many Fourier modes. We
couple this to a novel phase constraint that phase-locks
control target and solution phase. Results are demon-
strated on simulations of a slow-fast synthetic gene net-
work and an Oregonator model. Our methods extend
CBC to a much broader range of systems than have
been studied so far, opening up a range of novel exper-
imental opportunities on slow-fast systems.

Keywords Discretisation · Control-based continua-
tion · Experimental bifurcation analysis · Relaxation
oscillations · Bifurcation · Control · Phase constraints

1 Introduction

Experimental testing plays an important role in the
development, calibration, and validation of mathemati-
cal models of physical systems. Systematic testing is of
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particular importance for nonlinear systems, where the
presence of bifurcations can result in a significantly
different response for a small parameter change. A
range of bifurcations can be seen in nonlinear systems.
These can pose challenges to simple parameter-sweep
tests, with issues including a system going unstable,
or jumping to different response regimes to those of
interest, and not returning due to hysteresis. Further-
more, with open-loop testing, bifurcation structures
and system dynamics can only be inferred from stable
responses. Unstable responses contain much informa-
tion for parameter fitting [36,37,78], model identifica-
tion, and inferring separatrices; however, they are not
normally observable.

Control-based continuation (CBC) is able to system-
atically reveal both stable andunstable dynamicswithin
an experiment, through a combination of feedback con-
trol and path-followingmethods [75]. It is a model-free
experimental method, so that the resulting bifurcation
analysis does not depend on modelling assumptions or
fitted parameters. CBC uses feedback control to iso-
late the dynamics of interest, and to stabilise unstable
responses. A selection of advanced controller strategies
have been investigated for CBC, including adaptive
and model-predictive control [10,39–41]. Appropriate
control targets are solved for iteratively, using stan-
dard numerical methods and, when necessary, Fourier–
Galerkin discretisation.

CBC has seen significant success on mechanical
systems, with examples including resonance curves of
a harmonically forced nonlinear oscillator [3], map-
ping out fold bifurcations in two parameters [68], and
finding solution branches of self-excited oscillations
[36]. It has been applied to systems exhibiting complex
dynamics, such as high levels of friction [29], isolated
vibration modes [30], and the collective dynamics of
pedestrian flows [57,58]. Solution sets such as equi-
libria, bifurcations, and periodic orbits can be traced
out across a parameter range, uncovering the bifurca-
tion structure of a system, even when faced with noise
[10,70].Aswell as tracingout response curves, features
such as backbone curves [69] and dynamical stability
[3,5,67] can be inferred. The collected data can be used
for advanced system identification and parameter esti-
mation [4,10,76].

Phase-locked loop (PLL) controllers provide an
alternative to CBCwhen the response curves of interest
can be parameterised in terms of shifts between forc-
ing and response phase [54,62]. PLL methods have

found great success in experimentally computing the
backbone curves and nonlinear frequency response
functions of mechanical systems [11,53,63]. CBC and
PLL methods both provide consistent, agreeing results
[1,55], and can be coupled together in cases where
PLLs fail [2]. Nevertheless, CBC is more general than
PLL testing, and able to compute a wider range of fea-
tures, as it does not require a phase-parameterisation of
the response curve.

Slow-fast dynamics appear regularly throughout the
physical sciences, whereby state variables evolve at
disparate rates. In engineering, large control gains
can cause timescale separations in controlled sys-
tems, causing slow-fast responses [31]. In physics, the
behaviours of a laser under optical feedback can show
mixed-mode oscillations—an example of multiple-
timescale dynamics [46]. Biochemical systems such
as gene networks often show a range of expression
rates, which produce dynamics over well-separated
timescales [6]. Similarly, chemical reactions can pro-
duce relaxationoscillations, as a result of their slow-fast
dynamics; the Oregonator [19] is a classical model of
a chemical reaction undergoing relaxation oscillations.
Further examples of systems demonstrating slow-fast
dynamics and relaxation oscillations include Joseph-
son junctions in electronics [82]; predator–prey sys-
tems [43]; and models of societal growth [52]. See [32]
for additional examples, as well as a detailed coverage
of slow-fast dynamical systems.

In principle, CBC is directly applicable to relaxation
oscillations, andmultiple-timescale systemsmore gen-
erally. Nevertheless, the tools are limited in practice.
Numerical differentiation is required within the cor-
rection step of the continuation. Due to the model-free
nature of CBC, this must be performed using finite dif-
ferences. Continuation of periodic responses requires
discretisation, with each additional discretisation coef-
ficient imposing an additional system evaluation dur-
ing finite differencing. Numerical solutions therefore
become impractically slow, when using the large dis-
cretisation sizes necessary for relaxation oscillations.
The extra computations also introduce more oppor-
tunities for error from noise and system drift [70].
Consequently, parsimonious discretisationmethods are
required to successfully apply CBC to slow-fast sys-
tems.

A further issue is thatmultiple-timescale systems are
often autonomous, with no explicit time-dependency.
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Fig. 1 Block diagram for
control-based continuation
experiments. A controllable
black-box system of interest
is combined with a feedback
controller, which provides a
stabilising input to the
system. The CBC algorithm
is used to iteratively update
the control target x∗, and
the system parameter λ

Oscillatory solutions of autonomous systems comprise
of a family of phase-shifted trajectories, making it an
underdetermined problem to solve for a single oscilla-
tory response. Some form of phase condition is needed
to extract a unique solution.Options include the integral
phase-condition, used as standard in numerical contin-
uation [34] and demonstrated numerically with CBC
[75], or phase-plane CBC [36], which is ideally suited
for mechanical systems. However, both methods have
limitations—the integral phase condition can lead to
poor numerical stability with CBC, and phase-plane
CBC can result in larger discretisation sizes than nec-
essary when applied to relaxation oscillations.

To overcome these problems, we develop an alter-
native discretisation method and phase constraint for
CBC. B-splines are used in place of the Fourier basis,
so that the discretising basis functions can be tailored to
the signals of interest. Optimisation-based techniques
are introduced for producing an adaptive discretisa-
tion. The combination of basis functions and adapta-
tion methods allows for an accurate discretisation, with
lower dimensionality than Fourier methods.

In addition, we propose an angle-based parameteri-
sation of the discretised control target. This acts simi-
larly to the recently developed phase-plane CBC [36]
to provide a phase constraint for CBC; however, our
method can lead to lower discretisation sizes on slow-
fast signals. Our angle-based phase constraint does not
require knowledge of oscillation frequencies, improv-
ing both the speed and accuracy of numerical solu-
tions when compared to the integral phase constraint.
Together, thesemethods open up possibilities for faster,
more accurate CBC experiments on relaxation oscilla-
tions.

This work is structured as follows. Section2 intro-
duces the workings of CBC, and the limitations of stan-
dard discretisation methods. Section2.1 discusses how
to construct periodic B-spline models, and Sect. 2.2
explains how these may be used as an alternative to the
Fourier basis for Galerkin-discretisation. Section2.3
considers the selection of an optimal B-spline basis
for the problem of interest, and how to adapt the dis-
cretisation to new data. Next, Sect. 2.4 introduces the
method of angle-encoded control targets as a phase
constraint for autonomous systems. Our techniques are
demonstrated through simulations on a model of a syn-
thetic gene oscillator and chemical reaction network in
Sect. 3. Section4 discusses some pertinent aspects of
our methods, and Sect. 5 concludes the work.

2 Control-based continuation of relaxation
oscillations

Pseudo-arclength continuation systematically com-
putes the solution manifolds of an underdetermined
system [49,72]. With CBC, response families of an
experimental system are defined through a specific type
of control target, referred to as a noninvasive target, and
traced out using pseudo-arclength continuation. Fig-
ure1 depicts a block-diagram of a typical CBC experi-
ment. It consists of three parts: a controllable system, a
stabilising feedback controller operating in real-time,
and a suite of numerical methods, operating without
time constraints to detect and trace dynamics of inter-
est [3,75]. The controller is used to probe and manipu-
late the dynamics of the system. If properly designed, it
stabilises any unstable responses, and steers the system
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towards the dynamics of interest. A controlled system
maps a control target x∗(t) to an observed output x(t),
referred to as the input–output, or IO-mapping. Con-
tinuation equations are defined on the IO-map. Param-
eters and control targets are chosen using a numerical
solverwithin a pseudo-arclength continuation, to locate
responses that are intrinsic to the uncontrolled system.

CBC seeks noninvasive control [75]. A controller
is noninvasive if it stabilises a limit cycle or equilib-
rium that exists within the uncontrolled system, with-
out changing its position in parameter space. Hence,
for control target x∗(t) and measured system response
x(t), a sufficient condition for an applied control action
u(x∗, x, t) to be noninvasive is if x∗ is stabilised, and
u ≡ 0 for all time. Characteristics such as the geometry,
oscillatory period, and location of steady-state system
responses remain unchanged in the presence of non-
invasive control. However, unstable features are sta-
bilised, and become directly observable.

Fixed points of the IO-map are any control tar-
gets that are exactly tracked by the system output,
and therefore satisfy x∗ = x . For a proportional or
proportional-plus-derivative controller, the total con-
trol action ‖u(x∗, x, t)‖ is zero if and only if x∗(t) =
x(t), so that noninvasive control is given by fixed
points of the IO-map. Hence, noninvasive control tar-
gets are found by using a nonlinear solver to solve for
x(t) − x∗(t) = 0, guaranteeing zero control input and
natural system dynamics.

Solving for fixed-points is performed using standard
numerical methods, such as Newton or quasi-Newton
iterations [75]. These cannot be applied directly when
x∗ is oscillatory; instead, the zero-problem must be
discretised. All current CBC implementations use a
Fourier discretisation, in which control targets and sys-
tem responses are represented by truncated Fourier
series, and equality is sought between Fourier coef-
ficients [75]. Assume the control target and measured
system output are well-approximated by their first n
Fouriermodes. Expanding both functions in the Fourier
basis gives

x∗(t) = a∗
0 +

n∑

k=1

a∗
k cos(kωt) + b∗

k sin(kωt) , (1)

x(t) = a0 +
n∑

k=1

ak cos(kωt) + bk sin(kωt) , (2)

where ω is the oscillatory frequency. Then, x∗ − x = 0
is satisfied when a∗

0 − a0 = 0, a∗
k − ak = 0 and

b∗
k − bk = 0, for k ∈ {1, . . . , n}. Unlike the original
problem, the discretised problem can be solved using
standard numerical methods. Furthermore, the projec-
tion onto basis functions provides a degree of noise-
averaging, improving robustness with noise-corrupted
measurements.

Fourier discretisation has been used successfully
in existing CBC experiments, where signals are well-
approximated by few Fourier harmonics. Neverthe-
less, it presents challenges for systems which undergo
rapid changes, such as relaxationoscillations or impact-
ing and friction dynamics. Such systems produce
highly changeable signals, and many Fourier modes
are needed for producing an accurate discretisation.
This results in a high-dimensional continuation prob-
lem, which in turn slows down experiments and intro-
duces more opportunities for error. Here, we develop a
B-spline discretisation scheme to overcome this issue.

2.1 Periodic B-splines

A spline is a maximally smooth, piecewise-polynomial
curve. Splines are defined by choosing a set of knot
points and connecting them together with sections of
polynomial. Polynomial coefficients are determined
partially by ensuring that each polynomial starts and
ends at its boundary knots, and meets its neighbouring
polynomials smoothly. In addition, a pair of boundary
conditions are required. In this work, we assume peri-
odic boundary conditions.

Spline curves are often expressed as a weighted sum
of basis functions, to simplify computations. B-splines
are a family of minimal-support basis functions for
spline curves [9]. The B-spline basis is constructed
from a set of scalar-valued knots, defining the x posi-
tions at which each section of polynomial meets. The
y positions are determined by the basis function coef-
ficients.

The B-spline basis can be obtained through the fol-
lowing recurrence relation (see [9] for a detailed dis-
cussion and proof). Let � = {ξ0 ≤ · · · ≤ ξn} be an
ordered set of knots. Given�, the first-order B-splines,
consisting of piecewise-constant terms, are defined as

Bi,1(t) =
{
1, if ξi ≤ t ≤ ξi+1

0, otherwise.
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Fig. 2 An illustrative cubic spline model, constructed from five
basis functions, each with equispaced knots. Each cubic B-spline
is constructed from five consecutive knots. The range of these
five knots gives the domain of that B-spline function. Within this
domain, the spline is referred to as being active. The domain of

the cubic spline curve itself, shown here in dotted grey, is the
region within which exactly four B-spline functions are active.
As a result, knots must be placed on or outside the domain of
the spline model, to provide the appropriate number of B-splines
within the domain. These are referred to as exterior knots

Higher-order spline functions are constructed recur-
sively; let

ωi,k(t) =
{

t−ξi
ξi+k−1−ξi

, ti+k−1 �= ti

0, otherwise.

Then, the i th B-spline of order k, defined on knots �,
is given as

Bi,k(t) = ωi,k(t)Bi,k−1(t) + [
1 − ωi+1,k(t)

]
Bi+1,k−1(t) .

B-spline functions are generally evaluated using the
Cox–de Boor algorithm [8]. Implementations are pro-
vided as standard in many scientific computing pack-
ages.

Figure2depicts a cubicB-splinemodelwith equidis-
tant knots. By definition, each B-spline function has
minimal support across a domain determined by its
knots. Within the domain, the spline is referred to as
being active. It is observed that exactly four B-splines
are active at any point within the domain of the spline
curve for which the B-splines form a basis. A conse-
quence of this is that knots are also required outside
of the spline domain, to ensure the correct number of
active B-splines within the domain. We refer to the
knots outside of the domain as exterior knots, and knots
within the domain as interior knots. Exterior knots dic-
tate the boundary conditions of the spline model. Here
we recall how exterior knots can be chosen to give peri-
odic boundary conditions, using themethod of periodic
extension [9]. Section2.3 then considers how to select
optimal interior knots.

As depicted in Fig. 3, periodic boundary conditions
require the exterior knots and B-spline functions from
one period to overlap with those of adjacent periods.
This is achieved simply by shifting appropriate sets of
interior knots by one period [9]. Given a knot on the
lower and upper domain boundary, and three or more
interior knots, periodic exterior knots for a cubic set are
found by

– shifting the last three interior knots (blue dots in
Fig. 3) backwards by one period, to produce the
first three exterior knots (green dots);

– shifting the first three interior knots (blue dots) for-
ward by one period, to produce the last three exte-
rior knots (green dots);

– enforcing equality between respective pairs of coef-
ficients for the first and last three B-splines.

This ensures equality between the B-spline functions
at the start and end of the period and produces periodic
boundary conditions.

More rigorously, consider a cubic spline curve

b(t) =
n∑

i=−3

βi Bi (t), (3)

defined on the domain t ∈ [0, T ], with periodic
boundary conditions. The boundary conditions require
b(0) = b(T ), and likewise for all available derivatives.
Exactly four basis functions are active at the start of
the domain, and equivalently at the end. Considering
only these active basis functions, it is seen that periodic
boundary conditions require
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Fig. 3 Knot positions (dots) and basis functions (green, red
curves) of a B-spline model with periodic boundary conditions
(orange curve). The last three interior knots of the spline model
(blue dots) are shifted back by one period to get the left exte-
rior knots (green dots), and first three interior knots are shifted
forward by one period to get the right exterior knots. Boundary
knots (black dots) mark the points at which the resulting periodic
boundary conditions are applied. Note that if an identical spline

model were to be created one period in the past or future, the
interior knots of the adjacent periods (red dots) would overlap
exactly with the interior knots of this period; pairs of boundary
knots would overlap exactly. As a result, the basis functions of
the adjacent periods (red curves) would exactly overlap those of
this period (green curves), providing the equalities necessary for
periodic boundary conditions. (Color figure online)

0∑

i=−3

βi Bi (t) =
n∑

i=n−3

βi Bi (t + T ) , (4)

implying

0∑

i=−3

βi Bi (t) =
n∑

i=n−3

βi Bi (t + T ) , (5)

and

B−3(t) = Bn−3(t + T ), . . . , B0(t) = Bn(t + T ).

(6)

Each cubic B-spline is defined over a set of five knots;
let B-spline Bi (t) be constructed from knots �i =
{ξ i1 ≤ ξ i2 ≤ ξ i3 ≤ ξ i4 ≤ ξ i5}. Shifting a set of B-
spline knots by some amount T produces an equiva-
lent shift in the resulting B-spline function. That is,
given �i

T = {ξ i1 + T ≤ ξ i2 + T ≤ ξ i3 + T ≤
ξ i4 + T ≤ ξ i5 + T }, the corresponding B-spline func-
tion BT

i (t) satisfies BT
i (t + T ) = Bi (t). Hence, for

(B−3(t + T ) = Bn−3(t)) to be satisfied, we must have
[�n−3 = �−3 + T , �n−2 = �−2 + T , etc.]

2.2 B-spline discretisation for CBC

B-spline discretisation for CBC proceeds in much the
same way as Fourier discretisation. Noninvasiveness

is sought by solving for equality between the con-
trol target and system output, when proportional or
proportional-plus-derivative control are used. This is
achieved by projecting a system response onto a B-
spline basis, and seeking equality between the target
and response coefficients. Control targets are repre-
sented as a sum of basis functions Bi weighted by coef-
ficients β∗

i , as given by

x∗(t) =
n∑

i=1

β∗
i Bi (t) . (7)

Periodicity of the control target is guaranteed by select-
ing basis functions Bi for periodic boundary condi-
tions, as discussed in Sect. 2.1. Target x∗(t) is used to
control the system of interest, using a proportional or
proportional-plus-derivative strategy. Recorded sam-
ples (t j , x j ) from the system output x(t) are projected
back onto the basis functions Bi using least-squares.
Given samples (t j , x j ) for j ∈ {1, . . . , N }, let

[B]u,v = Bv(tu) , (8)

β = [β1, β2, . . . , βn]T , (9)

X = [x1, x2, . . . , xN ]T . (10)
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Algorithm 1 Pseudo-code for selecting spline knots to
minimise least-squares error.
function Objective(interior knots, reference signal)

� ← full knot set 	 Get boundary and exterior knots
Get B-spline basis from � 	 Eg. Cox–de Boor algorithm

e� ← ‖X − (BTB)−1 BT Xβ‖2 	 Least-squares error,
from Eqs. (11) and (12).

return e�

end function
procedure Knot placement(n, reference signal, repeats)

emin ← ∞
s ← 1
repeat

�0 ← Un[0,1] 	 Draw initial knots at random from
n-dimensional uniform distribution

�opt ← argmin� Objective(�, reference signal) 	
Numerically optimise � using L-BFGS-B, with �0 as initial
guess

e� ← Objective(�opt, reference signal)
if e� < emin then 	 Store best-performing knots

emin ← e�

�best ← �opt
end if
s ← s + 1

until s > repeats
end procedure

Equation (7) suggests X = Bβ; however, given suf-
ficient data, this is overdetermined, with a least-squares
error e of

e = ‖X − Bβ‖2 . (11)

Coefficients βlsq that minimise this error are given by
the least-squares Eq.

βlsq =
(
BTB

)−1 BT X . (12)

Hence, the B-spline representation x(t) of samples
(t j , x j ) is given by

x(t) ≈
n∑

i=1

βi Bi (t) , (13)

forβlsq = [β1, . . . , βn]. Noninvasiveness ismet when
β∗
i − βi = 0 for all i ∈ {1, . . . , n}.
Here, we exclusively consider cubic spline models.

Nevertheless, the methods presented in this work can
be implemented using splines of any order.

2.3 Selecting and adapting interior knots

B-spline knots act analogously to a mesh in finite ele-
ment methods. While uniformly spaced knots could

be used, it is typically beneficial to tailor the knots
to the problem of interest. Smaller discretisation sizes
are almost always achieved when knot positions are
selected specifically for the system of interest. Here,
we discuss a method to select an optimal set of spline
knots and to adaptively update them throughout a con-
tinuation.

Many methods have been proposed for selecting
spline knots. Free-knot methods choose knots either
through one of many optimisation-based techniques
[25,26,71,81], using various heuristics [38,51], or
by creating probabilistic distributions over knot sets
[14,42,45]. For CBC, the experimenter should be
free to determine their desired discretisation size. As
such, optimisation-based knot placement strategies are
appealing, whereby the experimenter chooses the num-
ber of knots, and the experimental results informwhere
they are best placed. We use numerical optimisation to
automatically place a predetermined number of knots,
in order to minimise the least-squares error between a
set of reference data, and the best-fit spline model of
those data.

The optimisation procedure is summarised in algo-
rithm 1, and knot selection proceeds as follows. For
each iteration of a local optimiser, a set of interior
knots are produced. From these, exterior and bound-
ary knots are added, and used to construct a set of basis
functions. A least-squares fit to a reference signal is
produced using these basis functions, and the local-
optimiser algorithm performs further iterations to find
the interior knots that minimise this fitting error. We
choose a bounded limited-memoryBFGS (L-BFGS-B)
local optimiser, implemented in SciPy [83]. To avoid
localminima, the optimisation is repeated several times
from random initial conditions, and the best result is
selected as thefinal knot set. The reference signal canbe
measurements from an uncontrolled system evaluation
when initialising knots, or the last accepted continua-
tion solution when following the knot adaptation pro-
cedure discussed next. As observed in Fig. 3, optimal
knots tend to be placed around turning-points within a
signal.

To ensure the optimiser proposes valid knots, con-
straints are applied to the problem, to restrict proposed
knots to within the model domain. Samples are pro-
jected onto a single period. We choose, without loss
of generality, to rescale that period onto the unit inter-
val. Each B-spline knot ξ can then be constrained to
ξ ∈ [0, 1], providing bounds on the search space.
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The objective function requires no additional eval-
uations of the controlled or uncontrolled system. Opti-
misation can be performed entirely offline in a matter
of seconds. Globally optimal knots are typically found.
An alternative to random restarts is a global optimiser
such as simulated annealing. In our tested cases, this is
found to generally produce the same knots as random
restarts, however random restarts produced satisfactory
results more rapidly for larger discretisation sizes.

Continuation solutions will change during an exper-
iment, as parameters are varied. It is preferable to adapt
the discretisation basis throughout the continuation.
We achieve this by running an optimisation step on
the current knots every time a new solution has been
accepted. We choose either a sequential least-squares
quadratic programming (SLSQP), or constrained trust-
region optimisation method for this, both implemented
in SciPy [83]. A new, different set of globally optimal
knots may emerge during an experiment. The experi-
menter may therefore choose to perform a full multi-
restart knot optimisation when the discretisation error
increases beyond a predetermined threshold. When
using adaptive discretisation, care must be taken to
ensure that the same basis functions are used to discre-
tise all solutions within a given prediction–correction
step; pairs of previous results cannot be used for secant
prediction if their discretised solutions are obtained
from different basis functions. Consistency in secant
predictions is obtained by rediscretising previous solu-
tion data, and projecting all samples onto the newly
updated basis functions. Hence, an accepted solution
is used as a reference signal for selecting knots, then
the same set of basis functions are used throughout all
calculations in the next prediction–correction step.

2.4 Angle-encoding phase constraint

A phase constraint is required to produce a unique
solution for the continuation of oscillations in an
autonomous system. Here, we obtain a unique solu-
tion by indexing control targets in terms of an angle-
based independent variable, instead of time. As CBC
solutions now lack any time-dependency, phase shifts
cease to be meaningful, and oscillatory solutions
become (locally) unique. We refer to our method as
angle-encoding, since control targets are solved for in
the angle-domain. Noninvasiveness is achieved when

equality is reached between the angle-encoded system
response and control target.

Angle-encoding proceeds by taking time-dependent
samples (ti , xi ), and converting them to time-
independent samples (φi , xi ). This is performed by
replacing the time index variable t with an angle-based
independent variable φ. Control targets are then con-
structed to give the desired system output at some state-
angle φ.

The full angle-encoding procedure is as follows.
Some system response x(t) ismeasured.A second vari-
able z(t) is also required, referred to as the embedding
variable. The embedding variable is used to reconstruct
a planar limit cycle from the observed data; it can come
from an explicitly measured state variable in an exper-
iment, or from a proxy for the state, such as delay
or derivative coordinates. Embedding variable z(t) is
used in conjunction with state variable x to calculate
an instantaneous state angle φ. The chosen embedding
must produce a unique mapping from angles to control
targets.

For some embedding variable z(x, y), the angle of
an embedded state (x(t), z(t)) is given by

φ(x, z) = atan2 (σ (z − μz) , x − μx ) . (14)

Parameters μx and μz shift the embedded limit cycle
to encircle the origin, and σ scales it. Origin choice
(μx , μz) is found to affect the performance of the con-
troller, as discussed further in Sect. 4. Scale-factor σ

is beneficial in the cases where x and z have signifi-
cantly different amplitudes. Such cases often arise with
slow-fast systems,whenusing derivative coordinates as
an embedding scheme. The scale factor ensures angles
are well-distributed across the interval [0, 2π), so that
the angle-encoded control target can be represented in
an effective manner. A good choice for σ is anything
that brings x(t) and σ z(x, y) into comparable ampli-
tudes. Principal component analysis may be used in
place of scale factor σ , to transform embedded states
when x and z are highly correlated, for example, in
delay embeddings.

Angle-encoded signals are time-independent, so
phase-shifts are no longer meaningful. Solution phases
are instead determined by the combination of sys-
tem dynamics and angle definition. As such, angle-
encoding ensures that solving for an oscillatory
response is a well-posed problem, with a unique solu-
tion. Furthermore, no knowledge of oscillatory period
is required. This simplifies the continuation equations,
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Fig. 4 Schematic diagramof the angle-encoded control strategy.
Measurements x(t) from the controlled system are embedded in
a planar limit cycle. The angle of the current embedded state is

used to find the instantaneous control target. The control target
is sent to a feedback controller, compared to measurements, and
fed back into the system as a control action

by avoiding the need to calculate the response fre-
quency of the system.

2.5 Angle-based control

Control proceeds as sketched in Fig. 4. At any given
instant, the system is observed. Observed measure-
ments x(t) are combined with some embedding vari-
able z and transformed, to reconstruct a planar limit
cycle. The angle of the current state on this limit cycle
is calculated with Eq. (14), and a proportional control
law of form

u(x, z) = kp
(
x∗(φ) − x(φ)

)
(15)

is chosen. Control force u is then fed back into the
system, to stabilise target x∗.

The continuation zero problem is replaced by its
angle-encoded counterpart, as

x(φ) = x∗(φ) . (16)

This requires the measured system output to be trans-
lated into an angle-encoded output, in the same way
as is performed by the controller. Equation (16) is dis-
cretised and solved identically to its time-dependent
counterpart.

Angle-encoded noninvasiveness behaves exactly the
same as temporal noninvasiveness, by guaranteeing
zero control action. An example is plotted in Fig. 5,
showing angle-encoded targets and responses. These
are taken from the first prediction–correction step of the
gene oscillator CBC simulation discussed in Sect. 3.2,
except with a larger stepsize of 0.75. Angle-encoded
control targets and system responses are shown, both
for an uncorrected prediction, and for the same solu-
tion after Newton-correction. It is seen that equality has
been found between the angle-encoded control target
and system response, giving a noninvasive solution.

Fig. 5 Examples of an
angle-encoded control
target and system response,
before and after a correction
step. Noninvasive control is
achieved when equality is
found between the
angle-encoded
discretisations of the control
target and system response
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3 Case studies

Our methods are demonstrated through simulations of
two slow-fast models—a gene oscillator, and an oscil-
lating chemical reaction. Notes on possible experimen-
tal implementations are provided, the CBC method is
discussed, and simulated results are presented for each
system.

The first test-system is taken from synthetic biology.
Mathematical modelling and systems identification are
powerful tools within systems and synthetic biology
[12,47,48]. Recent developments in the field have pro-
duced a range of novel methods for the automatic feed-
back control of gene expression and signalling path-
ways in live cells [27,44,50,59,60,65,66,73]. Accord-
ingly, methods are being actively developed to exploit
these control methods, for applying CBC to synthetic
gene networks [10], which could be of great benefit
when it is difficult to derive or calibrate models for the
biological system of interest. Here we show numerical
results of a CBC experiment, to track oscillations in
a modelled slow-fast gene regulatory network. Results
are obtained from a nondimensional model taken from
[23]. For proteins X and Y, with respective (nondimen-
sionalised) concentrations x and y, the network dynam-
ics is given by

dx

dt
= 1 + x2 + ασ x4

(1 + x2 + σ x4)(1 + y4)
− γx x , (17)

τy
dy

dt
= 1 + x2 + ασ x4

(1 + x2 + σ x4)(1 + y4)
− γy y , (18)

with τy = 10, α = 11, γx = 0.105, σ = 2; we
consider continuation parameter γy ∈ [0.01, 0.05]. All
parameter values are as given in [23], except for design
parameter τy . This quantifies the system timescale sep-
aration in the system, which we increase to 10 to fur-
therwiden the timescale separation.Bifurcation param-
eter γy quantifies the degradation rate of protein Y,
which can be modified by varying the concentration
of isopropyl-β-D-thiogalactopyranoside (IPTG) [23].
Recent methods have been developed to modify IPTG
concentrations online for cell cultures in microfluidic
chambers. In these cases, IPTG is used as a control
input to cells [27,73]; the same method can be used to
change IPTG concentrations for modifying bifurcation
parameter γy . Existing genomic control experiments
use bang-bang control strategies [35]; it remains to be

seen whether these methods have the necessary fidelity
to stabilise unstable oscillations. Optogenetic methods
provide an alternative approach for implementing con-
trol strategies, by using various wavelengths of light to
control gene expression [7,56,77].

Our second test system is the reduced Oregona-
tor model, describing the dynamics of the oscillating,
autocatalytic Belousov–Zhabotinsky reaction. Forc-
ing and feedback control have been used for a vari-
ety of experiments on the dynamics of Belousov–
Zhabotinsky reactions. A wide range of feedback con-
trollers have been proposed [17], with common exper-
imental strategies include combining video measure-
ments and optical feedback [20–22,28,79], and by
modifying reactant inflow rates [18,64]. Other exper-
iments use electrical stimulation to provide perturba-
tions into the experiment [33,61,74].We consider feed-
back control of an ODE model, representing a well-
stirred Belousov–Zhabotinsky reaction which could
be controlled through modification of reactant inflow
rates. Dynamics is governed by a two-variable nondi-
mensionalised Oregonator, obtained through a quasi
steady-state approximation of the full system [80]. The
model is given by

ε
dx

dt
= x(1 − x) − f

y(x − q)

x + q
, (19)

dy

dt
= x − y . (20)

We take ε = 0.1, q = 0.025, and f is to be varied, as
the continuation parameter.

3.1 CBC parameters

Simulations are produced using custom code in Python
3. For both systems, a proportional feedback law is cho-
sen. A gain Kp = 0.1 is chosen for the gene oscillator,
and gain Kp = 4 for the Oregonator. Gains are chosen
through trial and error, by seeking the smallest gain that
stabilises the unstable branch of orbits. Small gains are
preferred for experimental applications, to avoid ampli-
fying measurement noise. Control is applied additively
in both cases, to the state variable x of Eqs. (17) and
(19). For both systems, the second state variable y is
used as an angle-encoding embedding variable. Errors
are calculated between an angle-encoded target x∗(φ)

and the state variable x at angle φ(x, y).
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Cubic B-splines are used for the discretisation basis
functions. A discretisation with ten coefficients is used
for the gene network, and seven coefficients for the
Oregonator. Discretisation size is found by seeking the
fewest coefficients necessary to capture open-loop, ini-
tialising data with satisfactory accuracy. B-spline knots
are adapted after each successful prediction–correction
step. Pseudo-arclength continuation is chosen, with a
secant prediction scheme. Corrections are made by
a Newton-solver, with forward finite-differences for
Jacobian estimation, and a finite-differences stepsize of
5 × 10−3 for the gene oscillator, and 1 × 10−2 for the
chemical oscillator. Randomness in experiments limits
the accuracyof a numerical solution. It canbebeneficial
to cap the number of solver iterations to avoid excessive
experimental effort in noisy regions. To recreate exper-
imentally relevant conditions, we take a maximum of
three Newton iterations per correction step. Conver-
gence is declared when either the normed Newton-
step-size or solution residual falls below 5 × 10−3, or
three iterations have been reached. Continuation is ter-
minated when a solution amplitude falls below 0.05.

Continuation is initialised from twoopen-loop oscil-
lations. These are observed at parameters γy = 0.03
and γy = 0.0301 for the gene oscillator, and f = 0.75
and f = 0.755 for the chemical oscillator. Two sepa-
rate experiments are run, one continuing forward, then
one backward. A fixed prediction stepsize is used for
the chemical oscillator, of 0.1 for the forward run, and
0.05 for the backward run.

A simple stepsize-adaption routine is chosen for the
gene oscillator, to assist with continuation around the
sharp fold of periodics.Note that thismethod is not nec-
essarily the best choice for CBC experiments, as it can
be computationally inefficient. Other stepsize adapta-
tion methods for CBC are considered in [70]. Stepsize
adaptation proceeds as follows. ‘Current stepsize’ is
defined as the distance between the current corrected
solution guess, and the most recently accepted solu-
tion. The ratio between prediction stepsize and current
stepsize is calculated from the solver solution at each
step. If they are within a scale-factor of 1.2, the solu-
tion is accepted, and the stepsize is increased. Stepsize
is capped at a maximum of 0.2 for the forward-run,
and 0.1 for the backward run. If the solution distance is
not within a scale-factor of 1.2, the stepsize is reduced,
and a new prediction–correction step is taken. Stepsize
is capped at a minimum of 1 × 10−3. If the stepsize is

decreased below this, a convergence failure is declared,
and the continuation terminates.

A polar origin must be chosen for angle-encoding,
as described in Sect. 2.4. Careful choice of polar ori-
gin is important for successful control; Sect. 4.2 dis-
cusses origin placement, and defines and motivates
the placement options used here. The gene oscilla-
tor uses a max–min placement for the polar origin of
the forward-continuation; a min–max origin for the
backward-continuation. The chemical oscillator uses
a middle-origin for the forward continuation, and a
max–max origin for the backward run. The polar origin
is updated alongside the discretisation, after each new
solution has been accepted.

3.2 Results

Gene network results are shown in Fig. 6. To vali-
date the results, a bifurcation diagram is also gen-
erated directly from Eqs. (17), (18), using pseudo-
arclength continuation and orthogonal collocation,
with XPPAUTO version 8.0. [16] It is seen that CBC
traces outmost of the bifurcation diagramwith an exact
agreement to XPPAUTO. However, unlike XPPAUTO,
the CBC procedure only requires measurements of a
controlled system. This allows the system dynamics to
be studied directly in an experiment, instead of through
mathematical models. CBC is unable to trace out the
canard explosion at approximately γy = 0.01575.Nev-
ertheless, canard orbits are structurally unstable and
very short-lived in planar systems [13], so would be
very difficult to observe in an experiment. We there-
fore do not consider this a shortcoming of our methods,
but rather an inherent challenge of studying physical
slow-fast systems. Note that some methods exist for
controlling canard cycles [15,24].

Figure7 shows the results of CBC on an Oregonator
model. CBC solutions are again overlaid on a bifurca-
tion diagram generated with XPPAUTO. Our methods
are shown to trace out both stable and unstable periodic
responses, with comparable accuracy to XPPAUTO.

4 Discussion

4.1 Robustness to observation noise

Spline models are appealing for CBC: piecewise-
polynomials offer the broad descriptive capabilities
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Fig. 6 Simulated CBC results for an oscillating synthetic gene
network [23]. CBC results are shown on a in black, and are over-
laid on a bifurcation diagram generated in XPPAUTO (version
8.0), showing stable (pink) and unstable (grey-dotted) equilibria,
and stable (green) and unstable (purple dotted) limit cycles. The
dynamics of the oscillator are shown in b, c, as a time-series plot
of the x variable (panel b), and a phase-plane diagram illustrating
the nullclines (blue, orange lines), limit cycle (black line), equi-
librium (open circle), and flow-field (black arrows), (c). Time
series and phase plane plots are produced at γy = 0.03, indi-

cated by the vertical blue line in the bifurcation diagram. Stable
and unstable branches of periodic orbits aremarked as such; CBC
stabilises the unstable branches, to render themobservable. In the
open-loop system, branches of periodics emerge at the marked
Hopf bifurcations; branch stability switches at the saddle-node of
periodic orbits bifurcation (SNP), and on the canard explosion.
CBC results are seen to match the XPPAUTO results almost per-
fectly, with the exception of the canard explosion which CBC
cannot follow. (Color figure online)

of polynomial fitting, without suffering from Runge’s
phenomenon. In addition, the combination of model
smoothness and low-degree polynomials provide com-
pelling noise-filtering capabilities, as shown in Fig. 8.
Plotted are synthetic data, from a slow-fast system con-
trolled with a proportional controller. Data are gener-
ated from theOregonatormodel described in Sect. 3. To
recreate a realistic experiment, controller observations
are subject to measurement noise, producing a stochas-
tic system with a noisy response. B-spline discreti-
sation outperforms Fourier discretisation of the noisy
data. With low discretisation sizes, Fourier discretisa-
tion struggles to match the slow-changing section of
the signal; with larger discretisation sizes, it becomes
susceptible to noise corruption. B-splines provide a

more accurate description of the underlying determin-
istic process, and are robust against observation noise.

4.2 Angle-encoding origin choices

Angle-encoding requires a polar origin (μx , μz), from
which state angles are computed. Easily computed
choices for μx and μz are the mean over one period
of the signals x(t) and z(t), respectively. Neverthe-
less, these values do not work in all cases. With
some systems, the controller can settle to a spurious
equilibrium—an invasive equilibrium, near an equilib-
rium of the uncontrolled system. Spurious equilibria
are not representative of the true, uncontrolled equilib-
rium at that parameter value.

123



Numerical methods for control-based continuation

Fig. 7 a Bifurcation diagram of an autocatalytic chemical reac-
tion model, described by a planar Oregonator. The dynamics
of the oscillator are shown in b, c, as a time-series plot of the x
variable (b), and a phase-plane diagram illustrating the nullclines
(blue, orange lines), limit cycle (black line), equilibrium (open
circle), and flow-field (black arrows), panel (c). Time series and
phase plane plots are produced at f = 1.0, indicated by the ver-

tical blue line in the bifurcation diagram. CBC results are shown
(black lines) in the top panel, on top of a bifurcation diagram for
the same system generated by XPPAUTO (version 8.0) with the
same colour scheme as Fig. 6. CBC continuation is terminated
when the solution amplitude falls below 0.05; results are seen to
match those produced by XPPAUTO. (Color figure online)

Figure9 shows a set of phase plane diagrams that
elucidate this stalling mechanism. Controllers modify
the dynamics of a system; as angle-encoding is a time-
independent control strategy, the modified dynamics
can be shown on phase portrait diagrams. The con-
troller changes the nullcline of the controlled variable,
which can introduce additional equilibria into the sys-
tem, or cause changes in the positionof existing equilib-
ria. Although noninvasive control is generally success-
ful with angle-encoded control targets, the controlled
dynamics are not always robust. A small change in con-
trol target shape or system parameters can be enough
to push one of these unstable equilibria onto the sta-
ble nullcline branch. Such changes are to be expected
within the prediction and correction steps of a con-
tinuation experiment. Figure9 highlights this—a non-
invasive control target is found for the Oregonator, at

parameter f = 0.67. Periodic orbits are controlled suc-
cessfullywith this target, howeverwhen the same target
is used at a parameter of f = 0.65, oscillatory dynam-
ics are seen to have disappeared, the equilibrium has
stabilised, and the system has settled to an invasive
equilibrium (Fig. 9b).

In such cases, the oscillatory response can often be
restarted by changing μx and μz to move the polar
origin towards the spurious equilibrium. Changing the
polar origin also changes the nullclines of the controlled
system. This can push the invasive equilibrium back
onto the unstable nullcline branch, so that oscillatory
dynamics reappear (Fig. 9c). To this end, we define a
selection of choices of polar originwhich,while heuris-
tic, are found to often move the nullclines in an appro-
priate manner as to destabilise the invasive equilibria.
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Fig. 8 Comparison of Fourier and B-spline discretisation for
noise-corrupted observations of the chemical oscillator studied
in Sect. 3.2, at parameter f = 1. A control target is generated
from a deterministic, open-loop oscillation. Synthetic noisy data
are generated by controlling the system using a proportional con-

troller and the deterministically obtained control target, with con-
troller measurements corrupted by i.i.d. Gaussian white noise
of variance σ 2 = 0.1, to simulate noise-corrupted observations.
Spline discretisation is seen capture the true, noise-free datamore
accurately than Fourier

Fig. 9 Phase planes demonstrating mechanism of stalling for
angle-encoded control, showing flow-field (arrows), x and y
nullclines (blue, orange lines, respectively), stable and unsta-
ble equilibria (filled, open circles), angle-encoding origin (black
cross), and limit cycle trajectory where appropriate (black closed
curve). a Phase-plane of an uncontrolled Oregonator at param-
eter f = 0.65. b A noninvasive control target for parameter
f = 0.67 is found from a discretisation of open-loop oscilla-

tions. This is then used as an angle-encoded control target at
parameter f = 0.65, using a min–max origin. The controller is
seen to put a stable equilibrium into the system, so that oscil-
lations disappear. c The same control target is now used with a
max–min origin. Moving the polar origin has changed the null-
clines, such that the previous stable equilibrium has destabilised,
and the desired oscillations return
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Fig. 10 Sketch of the min–max and max–min polar origin
choices for determining a state angle from an embedded limit
cycle

Two heuristics are sketched in Fig. 10. The first
heuristic—themin–max origin—can fix spurious equi-
libria that would otherwise appear in the top-left of the
reconstructed cycle, by moving the polar origin up and
left slightly. It is defined by taking μx as the x coordi-
nate of the state with minimal z value, and μz as the z
coordinate of the state with maximal x value. The sec-
ond heuristic—the max–min origin—moves the polar
origin slightly down and right, and prevents spurious
equilibria from appearing in the bottom-right of the
reconstructed cycle. It is defined as the x value at the
state with maximal z value, and the z value of the state
with minimal x value. Additionally, a max–max and
min–min origin can be defined, following the same pat-
tern. More alternatives are a middle-origin, where the
polar origin placed in the centre of a minimal bounding
box for the limit cycle; to use the results of an equilib-
rium CBC to inform origin placement; or to manually
select the polar origin and keep it fixed throughout a
continuation. These heuristics succeed in our tested
cases, however it must be noted that they are merely
heuristics, and may not succeed in every case, or with
every embedding strategy. Future work should investi-
gate robust and automated polar origin placement.

5 Conclusion

CBC is a model-free method for performing a bifurca-
tion analysis of black-box andphysical systems.Topro-
mote faster, more accurate CBC experiments for relax-
ation oscillations, we considered methods for adap-
tive discretisation using a B-spline basis. Spline mod-
els are able to capture changeable system responses

more succinctly than the standard truncated Fourier
series method. Furthermore, we proposed the angle-
encoding phase constraint, which complements phase-
plane CBC [36] and produces lower-dimensional dis-
cretisations on relaxation oscillations. Angle-encoding
parameterises control targets by an angle rather than
time. It acts as a phase constraint, and removes the
need to compute response frequencies.

Our angle-encoding and B-spline-discretisation
methods were demonstrated on simulations of a syn-
thetic gene oscillator [23] and autocatalytic chemical
oscillator [80]. CBC produced accurate results, which
visually matched those obtained using XPPAUTO. B-
splines were found to be an efficient discretiser for
CBC of slow-fast systems. Angle-encoding offers a
compelling choice of phase-constraint for autonomous
systems, and both simplifies numerical computations
by avoiding computation of response period, and gives
robustness against drifts in response frequency.

Ourmethods are immediately beneficial for any sys-
tem whose responses contain many Fourier harmonics.
While relaxation oscillations form the motivation of
this work, we anticipate our methods will prove ben-
eficial to a wide range of systems. B-splines are able
to succinctly capture rapidly changing responses, such
as those arising in impacting and stick–slip oscillators,
and indeed any system for which Fourier discretisation
is not desirable. In addition, the phase constraint and
discretisation methods are distinct. B-spline discreti-
sation can be used without angle-encoding on nonau-
tonomous systems, and angle-encoding can be used
with Fourier discretisation when the Fourier–Galerkin
method is appropriate. Together, these two methods
open up the possibility of applying control-based con-
tinuation to a much wider range of systems—those
exhibiting autonomous responses, and those with sig-
nificant amounts of higher-order harmonics.

Angle-encoding is sometimes found to cause issues
within the controller. State angles can cease to change,
so that the system converges to an invasive equilibrium
instead of the oscillations of interest. Careful placement
of polar origins are seen to fix this in the cases tested
here. Future work is focusing on systematically iden-
tifying when stalling happens, and methods to prevent
it.
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