481 research outputs found

    Electrodeposition of In2S3 buffer layer for Cu(In,Ga)Se2 solar cells

    Get PDF
    AbstractThe electrochemical deposition of In2S3 thin films was carried out from an aqueous solution of InCl3 and Na2S2O3. The effect of the potential of deposition was studied on the cell parameters of CIGSe based solar cells. The obtained films depending on the deposition potential and thickness exhibited complete substrate coverage or nanocolumnar layers. XPS measurements detected the presence of indium sulphide and hydroxide depending on the deposition parameters. Maximum photoelectric conversion efficiency of 10.2% was obtained, limited mainly by a low fill factor (56%). Further process optimization is expected to lead to efficiencies comparable to CdS buffer layers

    The MIK2/SCOOP Signaling System Contributes to Arabidopsis Resistance Against Herbivory by Modulating Jasmonate and Indole Glucosinolate Biosynthesis.

    Get PDF
    Initiation of plant immune signaling requires recognition of conserved molecular patterns from microbes and herbivores by plasma membrane-localized pattern recognition receptors. Additionally, plants produce and secrete numerous small peptide hormones, termed phytocytokines, which act as secondary danger signals to modulate immunity. In Arabidopsis, the Brassicae-specific SERINE RICH ENDOGENOUS PEPTIDE (SCOOP) family consists of 14 members that are perceived by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR LIKE KINASE 2 (MIK2). Recognition of SCOOP peptides elicits generic early signaling responses but knowledge on how and if SCOOPs modulate specific downstream immune defenses is limited. We report here that depletion of MIK2 or the single PROSCOOP12 precursor results in decreased Arabidopsis resistance against the generalist herbivore Spodoptera littoralis but not the specialist Pieris brassicae. Increased performance of S. littoralis on mik2-1 and proscoop12 is accompanied by a diminished accumulation of jasmonic acid, jasmonate-isoleucine and indolic glucosinolates. Additionally, we show transcriptional activation of the PROSCOOP gene family in response to insect herbivory. Our data therefore indicate that perception of endogenous SCOOP peptides by MIK2 modulates the jasmonate pathway and thereby contributes to enhanced defense against a generalist herbivore

    Derivation of greenhouse gas emission factors for peatlands managed for extraction in the Republic of Ireland and the United Kingdom

    Get PDF
    Drained peatlands are significant hotspots of carbon dioxide (CO2) emissions and may also be more vulnerable to fire with its associated gaseous emissions. Under the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol, greenhouse gas (GHG) emissions from peatlands managed for extraction are reported on an annual basis. However, the Tier 1 (default) emission factors (EFs) provided in the IPCC 2013 Wetlands Supplement for this land use category may not be representative in all cases and countries are encouraged to move to higher-tier reporting levels with reduced uncertainty levels based on country- or regional-specific data. In this study, we quantified (1) CO2-C emissions from nine peat extraction sites in the Republic of Ireland and the United Kingdom, which were initially disaggregated by land use type (industrial versus domestic peat extraction), and (2) a range of GHGs that are released to the atmosphere with the burning of peat. Drainage-related methane (CH4) and nitrous oxide (N2O) emissions as well as CO2-C emissions associated with the off-site decomposition of horticultural peat were not included here. Our results show that net CO2-C emissions were strongly controlled by soil temperature at the industrial sites (bare peat) and by soil temperature and leaf area index at the vegetated domestic sites. Our derived EFs of 1.70 (±0.47) and 1.64 (±0.44) t CO2-C ha−1 yr−1 for the industrial and domestic sites respectively are considerably lower than the Tier 1 EF (2.8 ± 1.7 t CO2-C ha−1 yr−1) provided in the Wetlands Supplement. We propose that the difference between our derived values and the Wetlands Supplement value is due to differences in peat quality and, consequently, decomposition rates. Emissions from burning of the peat (g kg−1 dry fuel burned) were estimated to be approximately 1346 CO2, 8.35 methane (CH4), 218 carbon monoxide (CO), 1.53 ethane (C2H6), 1.74 ethylene (C2H4), 0.60 methanol (CH3OH), 2.21 hydrogen cyanide (HCN) and 0.73 ammonia (NH3), and this emphasises the importance of understanding the full suite of trace gas emissions from biomass burning. Our results highlight the importance of generating reliable Tier 2 values for different regions and land use categories. Furthermore, given that the IPCC Tier 1 EF was only based on 20 sites (all from Canada and Fennoscandia), we suggest that data from another 9 sites significantly expand the global data set, as well as adding a new region

    Investigating Ramp Wave Propagation inside Silica Glass with Laser Experiments and Molecular Simulations

    Get PDF
    Under elastic shock compression silica glass exhibits a very specific behaviour. A shock propagating inside a material is usually seen as the propagation of a discontinuity. However in silica glass, shocks are unstable and lead to the propagation of a ramp wave where the shock front becomes gradually larger over time. Ramp waves were already reported in the literature, however their origin remain uncertain. This work presents an original study combining laser shock-induced experiments and molecular dynamics simulation aiming to improve the understanding of the mechanisms involved. Experimental ramp waves were directly observed using shadowgraphy technique allowing for an estimation of the head and tail velocities. Molecular dynamics simulations were carried out in order to reproduce ramp waves and to gain insight into the material properties. Ramp waves were observed for both elastic and plastic shockwaves. In the latter case, the plastic waves were preceded by an elastic ramp precursor. The sound speed, related to the material compressibility, was found to decrease with increasing pressure, as observed experimentally for quasi-static hydrostatic loading, thus providing an explanation for the instabilities that lead to the propagation of ramp waves

    Greenhouse gas emission factors associated with rewetting of organic soils

    Get PDF
    Drained organic soils are a significant source of greenhouse gas (GHG) emissions to the atmosphere. Rewetting these soils may reduce GHG emissions and could also create suitable conditions for return of the carbon (C) sink function characteristic of undrained organic soils. In this article we expand on the work relating to rewetted organic soils that was carried out for the 2014 Intergovernmental Panel on Climate Change (IPCC) Wetlands Supplement. We describe the methods and scientific approach used to derive the Tier 1 emission factors (the rate of emission per unit of activity) for the full suite of GHG and waterborne C fluxes associated with rewetting of organic soils. We recorded a total of 352 GHG and waterborne annual flux data points from an extensive literature search and these were disaggregated by flux type (i.e. CO2, CH4, N2O and DOC), climate zone and nutrient status. Our results showed fundamental differences between the GHG dynamics of drained and rewetted organic soils and, based on the 100 year global warming potential of each gas, indicated that rewetting of drained organic soils leads to: net annual removals of CO2 in the majority of organic soil classes; an increase in annual CH4 emissions; a decrease in N2O and DOC losses; and a lowering of net GHG emissions. Data published since the Wetlands Supplement (n = 58) generally support our derivations. Significant data gaps exist, particularly with regard to tropical organic soils, DOC and N2O. We propose that the uncertainty associated with our derivations could be significantly reduced by the development of country specific emission factors that could in turn be disaggregated by factors such as vegetation composition, water table level, time since rewetting and previous land use history

    El consumo de tabaco, alcohol y mate produce cambios morfométricos en la células de la mucosa bucal clínicamente sana

    Get PDF
    Fil: Renou, Sandra Judith. Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Anatomía Patológica; Argentina.Fil: Caciva, Ricardo Crhistian. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra de Estomatología A; Argentina.Fil: Itoiz, María E. Universidad de Buenos Aires. Facultad de Odontología; Argentina.Fil: López de Blanc, Silvia. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra de Estomatología B; Argentina.Pacientes consumidores de tabaco (T) y alcohol (A) presentan en las células exfoliadas de la mucosa bucal cambios citológicos indicativos de daño celular. Hasta la actualidad no se ha estudiado si el consumo de mate o la combinación con T y/o A produce algún efecto sobre la mucosa oral. Por lo tanto el objetivo es evaluar por medio de citologías exfoliativas células de la mucosa bucal clínicamente sana, en pacientes voluntarios que consuman tabaco, alcohol y mate. METODOS: previa firma del Consentimiento informado se incluyeron 104 voluntarios sanos a los cuales se les completó una historia clínica detallando el consumo de tabaco (tipo y cantidad), mate (temperatura) y alcohol (cantidad y tipo de bebida). Se obtuvieron muestras con citobrush de tres zonas de la mucosa bucal clínicamente sana (piso de boca (A),mucosa yugal (B) y paladar blando (C). Se analizaron los extendidos citológicos (Image J) determinando el área celular (aC), nuclear (aN) y se calculó la relación núcleo-citoplasma (N/C). Se correlacionó con los factores categorizados según intensidad. Se aplicó el test de Kruskal Wallis. RESULTADOS: El área celular ocupada por el núcleo en general es menor en los que fuman, beben y toman mate caliente particularmente en las localizaciones A y C p< 0.05. En cuanto a la relación N/C, considerando la intensidad de T y A se observa una fuerte interacción, a medida que aumenta la intensidad de Tabaco disminuye la variabilidad en los valores N/C. Los cambios morfológicos observados permiten establecer que el consumo de tabaco, de alcohol y de mate en exceso produce alteraciones celulares que podrían asociarse a una temprana cancerización de campo.http://comunicacion.exactas.uba.ar/laguerracontraelcancer/Fil: Renou, Sandra Judith. Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Anatomía Patológica; Argentina.Fil: Caciva, Ricardo Crhistian. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra de Estomatología A; Argentina.Fil: Itoiz, María E. Universidad de Buenos Aires. Facultad de Odontología; Argentina.Fil: López de Blanc, Silvia. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra de Estomatología B; Argentina.Odontología, Medicina y Cirugía Ora

    Additional amphivasal bundles in pedicel pith exacerbate central fruit dominance and induce self-thinning of lateral fruitlets in apple

    Get PDF
    Apple (Malus x domestica) trees naturally produce an excess of fruitlets that negatively affect the commercial value of fruits brought to maturity, and impact their capacity to develop flower buds the following season. Therefore, chemical thinning has become an important cultural practice allowing the selective removal of unwanted fruitlets. As the public pressure to limit the use of chemical agents increases, the control of thinning becomes a major issue. Here, we characterized the self-thinning capacity of an apple hybrid-genotype, from a tree scale to a molecular level. Additional amphivasal vascular bundles were identified in the pith of pedicels supporting the fruitlets with the lowest abscission potential (central fruitlet), indicating that these bundles might have a role in the acquisition of dominance over lateral fruitlets. Sugar content analysis revealed that central fruitlets were better supplied in sorbitol than laterals\u27. Transcriptomic profiles allowed us to identify genes potentially involved in the over-production of vascular tissues in central pedicels. In addition, histological and transcriptomic data permitted a detailed characterization of abscission zone (AZ) development and the identification of key genes involved in this process. Our data confirm the major role of ethylene, auxin, and cell wall remodeling enzymes in AZ formation. The shedding process in this hybrid appears to be triggered by a naturally exacerbated dominance of central fruitlets over lateral ones, brought about by an increased supply of sugars, possibly through additional amphivasal vascular bundles. The characterization of this genotype opens new perspectives for the selection of elite apple cultivars

    Analysis of CATMA transcriptome data identifies hundreds of novel functional genes and improves gene models in the Arabidopsis genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since the finishing of the sequencing of the <it>Arabidopsis thaliana </it>genome, the Arabidopsis community and the annotator centers have been working on the improvement of gene annotation at the structural and functional levels. In this context, we have used the large CATMA resource on the Arabidopsis transcriptome to search for genes missed by different annotation processes. Probes on the CATMA microarrays are specific gene sequence tags (GSTs) based on the CDS models predicted by the Eugene software. Among the 24 576 CATMA v2 GSTs, 677 are in regions considered as intergenic by the TAIR annotation. We analyzed the cognate transcriptome data in the CATMA resource and carried out data-mining to characterize novel genes and improve gene models.</p> <p>Results</p> <p>The statistical analysis of the results of more than 500 hybridized samples distributed among 12 organs provides an experimental validation for 465 novel genes. The hybridization evidence was confirmed by RT-PCR approaches for 88% of the 465 novel genes. Comparisons with the current annotation show that these novel genes often encode small proteins, with an average size of 137 aa. Our approach has also led to the improvement of pre-existing gene models through both the extension of 16 CDS and the identification of 13 gene models erroneously constituted of two merged CDS.</p> <p>Conclusion</p> <p>This work is a noticeable step forward in the improvement of the Arabidopsis genome annotation. We increased the number of Arabidopsis validated genes by 465 novel transcribed genes to which we associated several functional annotations such as expression profiles, sequence conservation in plants, cognate transcripts and protein motifs.</p
    corecore