31 research outputs found

    A Sparse SCF algorithm and its parallel implementation: Application to DFTB

    Full text link
    We present an algorithm and its parallel implementation for solving a self consistent problem as encountered in Hartree Fock or Density Functional Theory. The algorithm takes advantage of the sparsity of matrices through the use of local molecular orbitals. The implementation allows to exploit efficiently modern symmetric multiprocessing (SMP) computer architectures. As a first application, the algorithm is used within the density functional based tight binding method, for which most of the computational time is spent in the linear algebra routines (diagonalization of the Fock/Kohn-Sham matrix). We show that with this algorithm (i) single point calculations on very large systems (millions of atoms) can be performed on large SMP machines (ii) calculations involving intermediate size systems (1~000--100~000 atoms) are also strongly accelerated and can run efficiently on standard servers (iii) the error on the total energy due to the use of a cut-off in the molecular orbital coefficients can be controlled such that it remains smaller than the SCF convergence criterion.Comment: 13 pages, 11 figure

    A massively parallel OpenFOAM solver for Richards Equation: towards mechanistic modelling of transfers at the watershed scale

    Get PDF
    We focus on the development and test of a massively parallel OpenFOAM solver for Richards Equation, towards mechanistic modelling of flow and transport phenomena at the watershed scale

    An open source massively parallel solver for Richards equation: Mechanistic modelling of water fluxes at the watershed scale

    Get PDF
    In this paper we present a massively parallel open source solver for Richards equation, named the RichardsFOAM solver. This solver has been developed in the framework of the open source generalist computational fluid dynamics tool box OpenFOAM® and is capable to deal with large scale problems in both space and time. The source code for RichardsFOAM may be downloaded from the CPC program library website. It exhibits good parallel performances (up to ∼90% parallel efficiency with 1024 processors both in strong and weak scaling), and the conditions required for obtaining such performances are analysed and discussed. These performances enable the mechanistic modelling of water fluxes at the scale of experimental watersheds (up to few square kilometres of surface area), and on time scales of decades to a century. Such a solver can be useful in various applications, such as environmental engineering for long term transport of pollutants in soils, water engineering for assessing the impact of land settlement on water resources, or in the study of weathering processes on the watersheds

    Massively parallel numerical simulation using up to 36,000 CPU cores of an industrial-scale polydispersed reactive pressurized fluidized bed with a mesh of one billion cells

    Get PDF
    For the last 30 years, experimental and modeling studies have been carried out on fluidized bed reactors from laboratory up to industrial scales. The application of developed models for predictive simulations has however been strongly limited by the available computational power and the capability of computational fluid dynamics software to handle large enough simulations. In recent years, both aspects have made significant advances and we thus now demonstrate the feasibility of a massively parallel simulation, on whole supercomputers using NEPTUNE_CFD, of an industrial-scale polydispersed fluidized-bed reactor. This simulation of an olefin polymerization reactor makes use of an unsteady Eulerianmulti-fluid approach and relies on a billion cellsmeshing. This is a worldwide premiere as the obtained accuracy is yet unmatched for such a large-scale system. The interest of this work is two-fold. In terms of High Performance Computation (HPC), all steps of setting-up the simulation, running it with NEPTUNE_CFD, and post-processing results induce multiple challenges due to the scale of the simulation. The simulation ran using 1260 up to 36,000 cores on supercomputers, used 15 millions of CPU hours and generated 200 TB of rawdata for a simulated physical time of 25s. This article details the methodology applied to handle this simulation, and also focuses on computation performances in terms of profiling, code efficiency and partitioning method suitability. Though being by itself interesting, the HPC challenge is not the only goal of this work as performing this highly-resolved simulation will benefit chemical engineering and CFD communities. Indeed, this computation enables the possibility to account, in a realistic way, for complex flows in an industrial-scale reactor. The predicted behavior is described, and results are post-processed to develop sub-grid models. These will allow for lower-cost simulations with coarser meshes while still encompassing local phenomenon

    Simulation numérique par éléments finis des grandes déformations des sols : application à la scarification

    No full text
    Mine clearing (or military breaching) consists in ploughing the superficial layer of the soil with a multi-tine blade located in front of a pusher vehicle: the tine destructure the soil and heave it in front of the blade which pushes it aside, with the mines inside. The aim of the present study is to perform the numerical simulation by the 3D finite element method of the highly non-linear problem of soil ploughing modeling. The numerical tool chosen for this purpose is the implicit finite element code Forge3® (devoted to Metal Forming Processes) which, thanks to its automatic re-meshing routine, is able to model large deformation. We have implemented in Forge3® two hypo-elastic-plastic models: an incompressible one for saturated fine soils, purely cohesive, and a compressible one based on the critical state concept for frictional or frictional-cohesive materials. These worksoftening material models are time-integrated by a generalized radial return technique within an implicit formulation. We show that compressibility yields a non-symmetric stiffness matrix, and that the symmetrization of the system is not robust enough, so that the non-symmetric solver Bi-CGSTAB has been implemented after comparative tests. The implemented models were validated on triaxial tests. For softening models, oscillations occurred in the stress/strain curves after the stress peak. These numerical difficulties were overcome using linearisation and regularisation techniques. As a second step, we performed numerical simulations for different kinds of tools : a single tine, a single tine + a slab of a blade, several tines and several tines + a blade. Tool displacements were simulated until a steady state was reached. This takes displacements all the larger as the tool system is wider, leading to intensive computation. Geometric parameters such as tine rake angle or system stem angle clearly influence the complex material flow patterns, in a way similar to experimental observations. Material model parameters shown dominant are those linked with the concept of critical state, i.e. corresponding to the large deformation range. Finally the global model was validated from a qualitative point of view, in terms of flow pattern and force distribution for multi-tine tools. Quantitative comparison with experiments must still be refined, returning to the constitutive model and its implementation.Le déminage mécanique consiste à scarifier le sol avec une " charrue ", outil formé d'une lame en V munie de plusieurs dents, poussée par un engin : les dents déstructurent le sol et le font remonter devant la lame qui l'évacue sur le côté avec les mines qu'il contient. L'objectif de nos travaux est de mettre en œuvre la simulation numérique par éléments finis du problème fortement non linéaire issu de la modélisation de la scarification du sol. Le code d'éléments finis implicite Forge3®, dédié à la mise en forme des métaux, a été choisi comme support numérique. Il permet de prendre en compte les grandes déformations, en particulier à l'aide de son remaillage automatique. Nous avons dans un premier temps implanté dans ce code deux modèles élastoplastiques de comportement, l'un incompressible réservé aux sols fins saturés, purement cohésifs, l'autre compressible, fondé sur la notion d'état critique, pour les matériaux purement frottants ou cohésifs et frottants. Ces modèles adoucissants sont intégrés par un schéma de retour radial généralisé, au sein d'une formulation implicite du problème aux limites. Nous montrons que la matrice de raideur est non symétrique dans le cas compressible et que la symétrisation du système ne conduit pas à une approche robuste. Nous avons donc importé et testé un solveur itératif non-symétrique : Bi-CGSTAB. Nous avons validé la programmation de ces modèles sur des essais triaxiaux. Pour les comportements adoucissants, on constate des oscillations dans la relation contrainte/déformation passé le pic de contrainte. Ces difficultés numériques sont traitées par linéarisation et régularisation. Dans un deuxième temps, nous avons mis en œuvre des simulations de scarification pour différents niveaux de complexité : une dent seule, une dent + une tranche de lame, plusieurs dents, en faisant suffisamment avancer l'outil pour atteindre le régime stationnaire ; cela se révèle d'autant plus long que l'outil est large, ce qui nous amène au calcul très intensif. L'influence de paramètres géométriques comme l'inclinaison de la dent ou l'angle d'étrave du système a été mise en évidence, elle est qualitativement conforme aux observations expérimentales. L'étude de l'influence des paramètres des modèles de comportement montre la prépondérance de ceux liés à l'état critique, i.e. aux propriétés mécaniques après de grandes déformations. Enfin nous avons validé qualitativement le code en termes de modes d'écoulements et de répartition des efforts pour des outils multi-dents. La comparaison quantitative des efforts reste à affiner en revenant sur le comportement choisi et son implémentation

    Un million d'atomes en chimie quantique

    No full text
    International audienc

    Numerical formulation for solving soil/tool interaction problem involving large deformation

    No full text
    International audiencePurpose - The aim of this work is to provide a global 3D finite element (FE) model devoted to the modelling of superficial soil ploughing in the large deformation range and for a vast class of soil treatment tools. Design/methodology/approach - We introduced soil constitutive equation in a FE software initially designed for the metal forming. We performed the numerical integration of the non-linear ploughing problem. Non-linearities encountered by the problem can be summed up: as soil constitutive equation (idealized with non-associated compressible plastic law), unilateral frictional contact conditions (with a rigid body), geometrical non-linearities (the ploughing tool) and large deformation range. To handle such difficulties we performed several numerical methods as implicit temporal scheme, Newton-Raphson, non-symmetric iterative solver, as well as proper approximation on stress and strain measures. Findings - Main results deal with the validation of the integration of the non-linear constitutive equation in the code and a parametric study of the ploughing process. The influence of tool geometric parameters on the soil deformation modes and on the force experienced on the tools had been point out. As well, the influence of soil characteristics as compressibility had been analyzed. Research limitations/implications - This research is devoted to perform a numerical model applicable for a large range of soil treatment tools and for a large class of soil. However, taking into account all kind of soil is utopist. So limitations met are essentially related to the limit of the accuracy of the elasto-plastic idealization for the soil. Practical implications - In practice the numerical model exposed in the paper can clearly help to improve and optimize any process involving superficial soil submitted to the mechanical action of a rigid body. Originalitylvalue - The original value of the paper is to provide a global and an applicable numerical model able to take into account the main topics related to the ploughing of superficial soils. Industrials in geotechnics, in agriculture or in military purposes can benefit in using such numerical model

    Un million d'atomes en chimie quantique

    No full text
    International audienc
    corecore